Advertisement

One-loop tests of supersymmetric gauge theories on spheres

  • Joseph A. Minahan
  • Usman Naseer
Open Access
Regular Article - Theoretical Physics

Abstract

We show that a recently conjectured form for perturbative supersymmetric partition functions on spheres of general dimension d is consistent with the flat space limit of 6-dimensional \( \mathcal{N} \) = 1 super Yang-Mills. We also show that the partition functions for \( \mathcal{N} \) =18-and9-dimensionaltheoriesareconsistentwiththeirknownflatspacelimits.

Keywords

Field Theories in Higher Dimensions Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Zumino, Euclidean supersymmetry and the many-instanton problem, Phys. Lett. B 69 (1977) 369.ADSCrossRefGoogle Scholar
  2. [2]
    M. Blau and G. Thompson, Euclidean SYM theories by time reduction and special holonomy manifolds, Phys. Lett. B 415 (1997) 242 [hep-th/9706225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.V. Belitsky, S. Vandoren and P. van Nieuwenhuizen, Yang-Mills and D instantons, Class. Quant. Grav. 17 (2000) 3521 [hep-th/0004186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP 03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    V. Pestun et al., Localization techniques in quantum field theories, arXiv:1608.02952 [INSPIRE].
  7. [7]
    V. Pestun, Review of localization in geometry, arXiv:1608.02954 [INSPIRE].
  8. [8]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere partition functions and the Zamolodchikov metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Bobev, H. Elvang, U. Kol, T. Olson and S.S. Pufu, Holography for \( \mathcal{N} \) = 1 on S 4, JHEP 10 (2016) 095 [arXiv:1605.00656] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Festuccia, unpublished.Google Scholar
  12. [12]
    S. Terashima, A localization computation in confining phase, JHEP 03 (2015) 097 [arXiv:1410.3630] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.A. Minahan, Localizing gauge theories on S d, JHEP 04 (2016) 152 [arXiv:1512.06924] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    P.S. Howe and K.S. Stelle, Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories, Phys. Lett. 137B (1984) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Marcus and A. Sagnotti, The ultraviolet behavior of N = 4 Yang-Mills and the power counting of extended superspace, Nucl. Phys. B 256 (1985) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.S. Howe and K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554 (2003) 190 [hep-th/0211279] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  23. [23]
    E. Sokatchev, Off-shell six-dimensional supergravity in harmonic superspace, Class. Quant. Grav. 5 (1988) 1459 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 01 (2012) 119] [arXiv:1101.2403] [INSPIRE].
  25. [25]
    H. Samtleben, E. Sezgin and D. Tsimpis, Rigid 6D supersymmetry and localization, JHEP 03 (2013) 137 [arXiv:1212.4706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations