Search for relativistic magnetic monopoles with five years of the ANTARES detector data


A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range β > 0.6 of magnetic monopole velocities using a strategy based on run-by-run Monte Carlo simulations. No signal above the background expectation from atmospheric muons and atmospheric neutrinos is observed, and upper limits are set on the magnetic monopole flux ranging from 5.7 × 10−16 to 1.5 × 10−18 cm−2·s−1·sr−1.

A preprint version of the article is available at ArXiv.


  1. [1]

    P.A.M. Dirac, Quantized Singularities in the Electromagnetic Field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. [2]

    G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].

  3. [3]

    A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Magnetic Monopoles From Superstring Models, Phys. Rev. Lett. 58 (1987) 1707 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    Y.M. Cho and D. Maison, Monopoles in Weinberg-Salam model, Phys. Lett. B 391 (1997) 360 [hep-th/9601028] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  7. [7]

    L. Patrizii and M. Spurio, Status of Searches for Magnetic Monopoles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 279 [arXiv:1510.07125] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    ATLAS collaboration, Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052009 [arXiv:1509.08059] [INSPIRE].

  9. [9]

    MoEDAL collaboration, B. Acharya et al., Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC, JHEP 08 (2016) 067 [arXiv:1604.06645] [INSPIRE].

  10. [10]

    MoEDAL collaboration, B. Acharya et al., Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC, Phys. Rev. Lett. 118 (2017) 061801 [arXiv:1611.06817] [INSPIRE].

  11. [11]

    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    ADS  MATH  Google Scholar 

  12. [12]

    J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    D. Ryu, H. Kang and P.L. Biermann, Cosmic magnetic fields in large scale filaments and sheets, Astron. Astrophys. 335 (1998) 19 [astro-ph/9803275] [INSPIRE].

  15. [15]

    E.N. Parker, The Origin of Magnetic Fields, Astrophys. J 160 (1970) 383.

    ADS  Article  Google Scholar 

  16. [16]

    ANTARES collaboration, M. Ageron et al., ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].

  17. [17]

    ANTARES collaboration, S. Adrian-Martinez et al., Search for Relativistic Magnetic Monopoles with the ANTARES Neutrino Telescope, Astropart. Phys. 35 (2012) 634 [arXiv:1110.2656] [INSPIRE].

  18. [18]

    IceCube collaboration, M.G. Aartsen et al., Searches for Relativistic Magnetic Monopoles in IceCube, Eur. Phys. J. C 76 (2016) 133 [arXiv:1511.01350] [INSPIRE].

  19. [19]

    ANTARES collaboration, J.A. Aguilar et al., The data acquisition system for the ANTARES Neutrino Telescope, Nucl. Instrum. Meth. A 570 (2007) 107 [astro-ph/0610029] [INSPIRE].

  20. [20]

    D.R. Tompkins, Total energy loss and Čerenkov emission from monopoles, Phys. Rev. 138 (1965) B248.

    ADS  Article  Google Scholar 

  21. [21]

    Y. Kazama, C.N. Yang and A.S. Goldhaber, Scattering of a Dirac Particle with Charge Ze by a Fixed Magnetic Monopole, Phys. Rev. D 15 (1977) 2287 [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    S.P. Ahlen, Monopole Track Characteristics in Plastic Detectors, Phys. Rev. D 14 (1976) 2935 [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    S.P. Ahlen, Stopping Power Formula for Magnetic Monopoles, Phys. Rev. D 17 (1978) 229 [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    J. Derkaoui et al., Energy losses of magnetic monopoles and of dyons in the earth, Astropart. Phys. 9 (1998) 173 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    CERN Application Software Group, GEANT 3.21 Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013 (1993).

  26. [26]

    G. Carminati, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: A fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [arXiv:0802.0562] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    Y. Becherini, A. Margiotta, M. Sioli and M. Spurio, A parameterisation of single and multiple muons in the deep water or ice, Astropart. Phys. 25 (2006) 1 [hep-ph/0507228] [INSPIRE].

  28. [28]

    J. Brunner, ANTARES simulation tools, in proceedings of The VLVnT workshop, Amsterdam (2003),

  29. [29]

    ANTARES collaboration, A. Margiotta, Common simulation tools for large volume neutrino detectors, Nucl. Instrum. Meth. A 725 (2013) 98 [INSPIRE].

  30. [30]

    V. Agrawal, T.K. Gaisser, P. Lipari and T. Stanev, Atmospheric neutrino flux above 1-GeV, Phys. Rev. D 53 (1996) 1314 [hep-ph/9509423] [INSPIRE].

  31. [31]

    G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in Atmospheric Neutrino Fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].

  32. [32]

    L. Fusco and A. Margiotta, The Run-by-Run Monte Carlo simulation for the ANTARES experiment, EPJ Web Conf. 116 (2016) 02002.

    Article  Google Scholar 

  33. [33]

    ANTARES collaboration, J.A. Aguilar et al., A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope, Astropart. Phys. 34 (2011) 652 [arXiv:1105.4116] [INSPIRE].

  34. [34]

    ANTARES collaboration, S. Adrian-Martinez et al., Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope, Astrophys. J. 786 (2014) L5 [arXiv:1402.6182] [INSPIRE].

  35. [35]

    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

  36. [36]

    G.C. Hill and K. Rawlins, Unbiased cut selection for optimal upper limits in neutrino detectors: The model rejection potential technique, Astropart. Phys. 19 (2003) 393 [astro-ph/0209350] [INSPIRE].

  37. [37]

    ANTARES collaboration, J.A. Aguilar et al., Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector, Astropart. Phys. 34 (2010) 179 [arXiv:1007.1777] [INSPIRE].

  38. [38]

    ANTARES collaboration, S. Adrian-Martinez et al., Measurement of the atmospheric ν μ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope, Eur. Phys. J. C 73 (2013) 2606 [arXiv:1308.1599] [INSPIRE].

  39. [39]

    ANTARES collaboration, S. Adrian-Martinez et al., First Search for Point Sources of High Energy Cosmic Neutrinos with the ANTARES Neutrino Telescope, Astrophys. J. 743 (2011) L14 [arXiv:1108.0292] [INSPIRE].

  40. [40]

    ANTARES collaboration, P. Amram et al., The ANTARES optical module, Nucl. Instrum. Meth. A 484 (2002) 369 [astro-ph/0112172] [INSPIRE].

  41. [41]

    ANTARES collaboration, J.A. Aguilar et al., Transmission of light in deep sea water at the site of the ANTARES Neutrino Telescope, Astropart. Phys. 23 (2005) 131 [astro-ph/0412126] [INSPIRE].

  42. [42]

    MACRO collaboration, M. Ambrosio et al., Final results of magnetic monopole searches with the MACRO experiment, Eur. Phys. J. C 25 (2002) 511 [hep-ex/0207020] [INSPIRE].

  43. [43]

    BAIKAL collaboration, K. Antipin et al., Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope, Astropart. Phys. 29 (2008) 366 [INSPIRE].

  44. [44]

    KM3Net collaboration, S. Adrian-Martinez et al., Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information




Corresponding author

Correspondence to I. El Bojaddaini.

Additional information

ArXiv ePrint: 1703.00424

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The ANTARES collaboration., Albert, A., André, M. et al. Search for relativistic magnetic monopoles with five years of the ANTARES detector data. J. High Energ. Phys. 2017, 54 (2017).

Download citation


  • Exotics
  • Neutrino Detectors and Telescopes (experiments)