Advertisement

Quadrality for supersymmetric matrix models

  • Sebastián Franco
  • Sangmin Lee
  • Rak-Kyeong Seong
  • Cumrun Vafa
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce a new duality for \( \mathcal{N} \) = 1 supersymmetric gauged matrix models. This 0d duality is an order 4 symmetry, namely an equivalence between four different theories, hence we call it Quadrality. Our proposal is motivated by mirror symmetry, but is not restricted to theories with a D-brane realization and holds for general \( \mathcal{N} \) = 1 matrix models. We present various checks of the proposal, including the matching of: global symmetries, anomalies, deformations and the chiral ring. We also consider quivers and the corresponding quadrality networks. Finally, we initiate the study of matrix models that arise on the worldvolume of D(-1)-branes probing toric Calabi-Yau 5-folds.

Keywords

Brane Dynamics in Gauge Theories D-branes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
  3. [3]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, JHEP 02 (2017) 106 [arXiv:1609.01723] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0,2) quiver gauge theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-yau 4-folds and 2d (0, 2) quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016) 020 [arXiv:1602.01834] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Futaki and K. Ueda, Tropical Coamoeba and torus-equivariant homological mirror symmetry for the projective space, Commun. Math. Phys. 332 (2014) 53 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  13. [13]
    K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [INSPIRE].
  14. [14]
    S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].
  15. [15]
    S. Franco, Y.-H. He, C. Herzog and J. Walcher, Chaotic duality in string theory, Phys. Rev. D 70 (2004) 046006 [hep-th/0402120] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Fukuma, H. Kawai, Y. Kitazawa and A. Tsuchiya, String field theory from IIB matrix model, Nucl. Phys. B 510 (1998) 158 [hep-th/9705128] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys. 99 (1998) 713 [hep-th/9802085] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  20. [20]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Honda and Y. Yoshida, Supersymmetric index on T 2 × S 2 and elliptic genus, arXiv:1504.04355 [INSPIRE].
  24. [24]
    A. Gadde, S.S. Razamat and B. Willett, On the reduction of 4d \( \mathcal{N} \) = 1 theories on \( {\mathbb{S}}^2 \), JHEP 11 (2015) 163 [arXiv:1506.08795] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Gadde and W. Yan, Reducing the 4d index to the S 3 partition function, JHEP 12 (2012) 003 [arXiv:1104.2592] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, arXiv:1608.02955 [INSPIRE].
  29. [29]
    A. Gadde, S. Gukov and P. Putrov, Exact solutions of 2d supersymmetric gauge theories, arXiv:1404.5314 [INSPIRE].
  30. [30]
    M.B. Green and M. Gutperle, D instanton partition functions, Phys. Rev. D 58 (1998) 046007 [hep-th/9804123] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sebastián Franco
    • 1
    • 2
  • Sangmin Lee
    • 3
    • 4
    • 5
  • Rak-Kyeong Seong
    • 6
  • Cumrun Vafa
    • 7
  1. 1.Physics DepartmentThe City College of the CUNYNew YorkU.S.A.
  2. 2.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.
  3. 3.Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  4. 4.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  5. 5.College of Liberal StudiesSeoul National UniversitySeoulKorea
  6. 6.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  7. 7.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations