Skip to main content

Measurement of electrons from beauty-hadron decays in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV and Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV

A preprint version of the article is available at arXiv.

Abstract

The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1<p T < 8 GeV/c in minimum-bias p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV and in 1.3 < p T < 8 GeV/c in the 20% most central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV. The pp reference spectra at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV and \( \sqrt{s}=2.76 \) TeV, needed for the calculation of the nuclear modification factors R pPb and R PbPb, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at \( \sqrt{s}=7 \) TeV. In the p T interval 3 < p T < 8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower p T, the R PbPb values increase with large systematic uncertainties. The R pPb is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured R pPb and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of R PbPb below unity at high p T may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.

References

  1. [1]

    Wuppertal-Budapest collaboration, S. Borsányi, Z. Fodor, et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

  2. [2]

    HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  3. [3]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    F.-M. Liu and S.-X. Liu, Quark-gluon plasma formation time and direct photons from heavy ion collisions, Phys. Rev. C 89 (2014) 034906 [arXiv:1212.6587] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    ALICE collaboration, Two-pion Bose-Einstein correlations in central Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Lett. B 696 (2011) 328 [arXiv:1012.4035] [INSPIRE].

  6. [6]

    M. Gyulassy and X.N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

  7. [7]

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

  8. [8]

    U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

  9. [9]

    Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].

  10. [10]

    N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].

  11. [11]

    B.-W. Zhang, E. Wang and X.-N. Wang, Heavy quark energy loss in nuclear medium, Phys. Rev. Lett. 93 (2004) 072301 [nucl-th/0309040] [INSPIRE].

  12. [12]

    M. Djordjevic and M. Gyulassy, Heavy quark radiative energy loss in QCD matter, Nucl. Phys. A 733 (2004) 265 [nucl-th/0310076] [INSPIRE].

  13. [13]

    N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Testing the color charge and mass dependence of parton energy loss with heavy-to-light ratios at RHIC and CERN LHC, Phys. Rev. D 71 (2005) 054027 [hep-ph/0501225] [INSPIRE].

  14. [14]

    N. Armesto, Nuclear shadowing, J. Phys. G 32 (2006) R367 [hep-ph/0604108] [INSPIRE].

  15. [15]

    H. Fujii, F. Gelis and R. Venugopalan, Quark pair production in high energy pA collisions: general features, Nucl. Phys. A 780 (2006) 146 [hep-ph/0603099] [INSPIRE].

  16. [16]

    J.W. Cronin et al., Production of hadrons with large transverse momentum at 200, 300 and 400 GeV, Phys. Rev. D 11 (1975) 3105 [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    R. Sharma, I. Vitev and B.-W. Zhang, Light-cone wave function approach to open heavy flavor dynamics in QCD matter, Phys. Rev. C 80 (2009) 054902 [arXiv:0904.0032] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    Z.-B. Kang, I. Vitev, E. Wang, H. Xing and C. Zhang, Multiple scattering effects on heavy meson production in p+A collisions at backward rapidity, Phys. Lett. B 740 (2015) 23 [arXiv:1409.2494] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

  20. [20]

    STAR collaboration, M.M. Aggarwal et al., Measurement of the Bottom contribution to non-photonic electron production in p + p collisions at \( \sqrt{s}=200 \) GeV, Phys. Rev. Lett. 105 (2010) 202301 [arXiv:1007.1200] [INSPIRE].

  21. [21]

    STAR collaboration, H. Agakishiev et al., High p T non-photonic electron production in p+p collisions at \( \sqrt{s}=200 \) GeV, Phys. Rev. D 83 (2011) 052006 [arXiv:1102.2611] [INSPIRE].

  22. [22]

    CDF collaboration, D. Acosta et al., Measurement of the J/ψ meson and b-hadron production cross sections in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 71 (2005) 032001 [hep-ex/0412071].

  23. [23]

    ALICE collaboration, Measurement of electrons from beauty hadron decays in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 721 (2013) 13 [Erratum ibid. B 763 (2016) 507] [arXiv:1208.1902] [INSPIRE].

  24. [24]

    ALICE collaboration, Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at \( \sqrt{s}=2.76 \) TeV, Phys. Rev. D 91 (2015) 012001 [arXiv:1405.4117] [INSPIRE].

  25. [25]

    ALICE collaboration, Measurement of prompt J/ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 065 [arXiv:1205.5880] [INSPIRE].

  26. [26]

    LHCb collaboration, Measurement of the B ± production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 093 [arXiv:1202.4812] [INSPIRE].

  27. [27]

    CMS collaboration, Measurement of the strange B meson production cross section with J/ψ ϕ decays in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 84 (2011) 052008 [arXiv:1106.4048] [INSPIRE].

  28. [28]

    ATLAS collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Nucl. Phys. B 850 (2011) 387 [arXiv:1104.3038] [INSPIRE].

  29. [29]

    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  30. [30]

    M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].

  31. [31]

    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    PHENIX collaboration, A. Adare et al., Energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [INSPIRE].

  33. [33]

    PHENIX collaboration, A. Adare et al., Heavy quark production in p + p and energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. C 84 (2011) 044905 [arXiv:1005.1627] [INSPIRE].

  34. [34]

    ALICE collaboration, Centrality dependence of high-p T D meson suppression in Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 11 (2015) 205 [arXiv:1506.06604] [INSPIRE].

  35. [35]

    ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].

  36. [36]

    ALICE collaboration, Production of muons from heavy flavour decays at forward rapidity in pp and Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Rev. Lett. 109 (2012) 112301 [arXiv:1205.6443] [INSPIRE].

  37. [37]

    ALICE collaboration, Production of charged pions, kaons and protons at large transverse momenta in pp and Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Lett. B 736 (2014) 196 [arXiv:1401.1250] [INSPIRE].

  38. [38]

    M. Djordjevic, M. Djordjevic and B. Blagojevic, RHIC and LHC jet suppression in non-central collisions, Phys. Lett. B 737 (2014) 298 [arXiv:1405.4250] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    M. Djordjevic, Heavy flavor puzzle at LHC: a serendipitous interplay of jet suppression and fragmentation, Phys. Rev. Lett. 112 (2014) 042302 [arXiv:1307.4702] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    ALICE collaboration, Inclusive, prompt and non-prompt J/ψ production at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 07 (2015) 051 [arXiv:1504.07151] [INSPIRE].

  41. [41]

    CMS collaboration, Suppression of non-prompt J/ψ, prompt J/ψ and Y (1S) in PbPb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 05 (2012) 063 [arXiv:1201.5069] [INSPIRE].

  42. [42]

    CMS collaboration, Evidence of b-jet quenching in PbPb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Rev. Lett. 113 (2014) 132301 [arXiv:1312.4198] [INSPIRE].

  43. [43]

    PHENIX collaboration, A. Adare et al., Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. C 93 (2016) 034904 [arXiv:1509.04662] [INSPIRE].

  44. [44]

    CMS collaboration, Study of B meson production in p+Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV using exclusive hadronic decays, Phys. Rev. Lett. 116 (2016) 032301 [arXiv:1508.06678] [INSPIRE].

  45. [45]

    CMS collaboration, Transverse momentum spectra of inclusive b jets in pPb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 754 (2016) 59 [arXiv:1510.03373] [INSPIRE].

  46. [46]

    CMS collaboration, J/ψ production in p Pb collisions, CMS-PAS-HIN-14-009 (2014).

  47. [47]

    LHCb collaboration, Study of J/ψ production and cold nuclear matter effects in pP b collisions at \( \sqrt{s_{\;N\;N}}=5 \) TeV, JHEP 02 (2014) 072 [arXiv:1308.6729] [INSPIRE].

  48. [48]

    ALICE collaboration, Measurement of prompt D-meson production in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Rev. Lett. 113 (2014) 232301 [arXiv:1405.3452] [INSPIRE].

  49. [49]

    ALICE collaboration, Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 754 (2016) 81 [arXiv:1509.07491] [INSPIRE].

  50. [50]

    PHENIX collaboration, A. Adare et al., Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. Lett. 112 (2014) 252301 [arXiv:1310.1005] [INSPIRE].

  51. [51]

    ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].

  52. [52]

    ALICE collaboration, Long-range angular correlations of π, K and p in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 726 (2013) 164 [arXiv:1307.3237] [INSPIRE].

  53. [53]

    ATLAS collaboration, Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 725 (2013) 60 [arXiv:1303.2084] [INSPIRE].

  54. [54]

    CMS collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718 (2013) 795 [arXiv:1210.5482] [INSPIRE].

  55. [55]

    PHENIX collaboration, A. Adare et al., Quadrupole anisotropy in dihadron azimuthal correlations in central d+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Rev. Lett. 111 (2013) 212301 [arXiv:1303.1794] [INSPIRE].

  56. [56]

    STAR collaboration, L. Adamczyk et al., Long-range pseudorapidity dihadron correlations in d+Au collisions at \( \sqrt{s_{\;N\;N}}=200 \) GeV, Phys. Lett. B 747 (2015) 265 [arXiv:1502.07652] [INSPIRE].

  57. [57]

    A.M. Sickles, Possible evidence for radial flow of heavy Mesons in d+Au collisions, Phys. Lett. B 731 (2014) 51 [arXiv:1309.6924] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A. Dainese, Charm production and in-medium QCD energy loss in nucleus nucleus collisions with ALICE: A Performance study, Ph.D. thesis, Padua University, Padua, Italy (2003), nucl-ex/0311004 [INSPIRE].

  59. [59]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  60. [60]

    ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  61. [61]

    ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  62. [62]

    J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    ALICE collaboration, ALICE transition-radiation detector: technical design report, CERN-LHCC-2001-021 (2001).

  64. [64]

    ALICE collaboration, ALICE Time-Of Flight system (TOF): addendum to the technical design report, CERN-LHCC-2002-016 (2002).

  65. [65]

    ALICE collaboration, ALICE forward detectors: FMD, TO and VO: technical design report, CERN-LHCC-2004-025 (2004).

  66. [66]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  67. [67]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  68. [68]

    M. Gyulassy and X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE].

  69. [69]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  70. [70]

    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    R. Brun et al., GEANT: detector description and simulation tool, CERN-W-5013 (1994).

  72. [72]

    ALICE collaboration, Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 86 (2012) 112007 [arXiv:1205.5423] [INSPIRE].

  73. [73]

    ALICE collaboration, Multiplicity dependence of pion, kaon, proton and Λ production in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 728 (2014) 25 [arXiv:1307.6796] [INSPIRE].

  74. [74]

    ALICE collaboration, Multiplicity dependence of charged pion, kaon and (anti)proton production at large transverse momentum in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Lett. B 760 (2016) 720 [arXiv:1601.03658] [INSPIRE].

  75. [75]

    ZEUS collaboration, H. Abramowicz et al., Measurement of charm fragmentation fractions in photoproduction at HERA, JHEP 09 (2013) 058 [arXiv:1306.4862] [INSPIRE].

  76. [76]

    G. Cowan, Statistical data analysis, Oxford science publications, Clarendon Press, Oxford, U.K. (2004).

  77. [77]

    ALICE collaboration, Pseudorapidity density of charged particles in p+Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Phys. Rev. Lett. 110 (2013) 032301 [arXiv:1210.3615] [INSPIRE].

  78. [78]

    ALICE collaboration, Measurement of visible cross sections in proton-lead collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV in van der Meer scans with the ALICE detector, 2014 JINST 9 P11003 [arXiv:1405.1849] [INSPIRE].

  79. [79]

    ALICE collaboration, Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at \( \sqrt{s_{\;N\;N}}=5.02 \) TeV, Eur. Phys. J. C 74 (2014) 3054 [arXiv:1405.2737] [INSPIRE].

  80. [80]

    ALICE collaboration, K 0 S and Λ production in Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530] [INSPIRE].

  81. [81]

    R. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comp. Phys. Comm. 77 (1993) 219.

    ADS  Article  Google Scholar 

  82. [82]

    ALICE collaboration, Neutral pion production at midrapidity in pp and Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Eur. Phys. J. C 74 (2014) 3108 [arXiv:1405.3794] [INSPIRE].

  83. [83]

    ALICE collaboration, Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 09 (2012) 112 [arXiv:1203.2160] [INSPIRE].

  84. [84]

    M. He, R.J. Fries and R. Rapp, Heavy flavor at the Large Hadron Collider in a strong coupling approach, Phys. Lett. B 735 (2014) 445 [arXiv:1401.3817] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    Y. Oh, C.M. Ko, S.H. Lee and S. Yasui, Heavy baryon/meson ratios in relativistic heavy ion collisions, Phys. Rev. C 79 (2009) 044905 [arXiv:0901.1382] [INSPIRE].

  86. [86]

    R. Averbeck, N. Bastid, Z.C. del Valle, P. Crochet, A. Dainese and X. Zhang, Reference heavy flavour cross sections in pp collisions at \( \sqrt{s}=2.76 \) TeV, using a pQCD-driven \( \sqrt{s} \) -scaling of ALICE measurements at \( \sqrt{s}=7 \) TeV, arXiv:1107.3243 [INSPIRE].

  87. [87]

    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    ALICE collaboration, Beauty production in pp collisions at \( \sqrt{s}=2.76 \) TeV measured via semi-electronic decays, Phys. Lett. B 738 (2014) 97 [arXiv:1405.4144] [INSPIRE].

  89. [89]

    ALICE collaboration, Measurement of the production of high-p T electrons from heavy-flavour hadron decays in Pb-Pb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Lett. B 771 (2017) 467 [arXiv:1609.07104] [INSPIRE].

  90. [90]

    K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    M. Nahrgang, J. Aichelin, P.B. Gossiaux and K. Werner, Influence of hadronic bound states above T c on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 014905 [arXiv:1305.6544] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    A. Beraudo, A. De Pace, M. Monteno, M. Nardi and F. Prino, Heavy flavors in heavy-ion collisions: quenching, flow and correlations, Eur. Phys. J. C 75 (2015) 121 [arXiv:1410.6082] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    W.A. Horowitz and M. Gyulassy, The surprising transparency of the sQGP at LHC, Nucl. Phys. A 872 (2011) 265 [arXiv:1104.4958] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Elastic, inelastic and path length fluctuations in jet tomography, Nucl. Phys. A 784 (2007) 426 [nucl-th/0512076] [INSPIRE].

  95. [95]

    W.A. Horowitz, Fluctuating heavy quark energy loss in a strongly coupled quark-gluon plasma, Phys. Rev. D 91 (2015) 085019 [arXiv:1501.04693] [INSPIRE].

    ADS  Google Scholar 

  96. [96]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions, J. Phys. G 42 (2015) 115106 [arXiv:1408.2964] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    J. Uphoff, F. Senzel, O. Fochler, C. Wesp, Z. Xu and C. Greiner, Elliptic flow and nuclear modification factor in ultrarelativistic heavy-ion collisions within a partonic transport model, Phys. Rev. Lett. 114 (2015) 112301 [arXiv:1401.1364] [INSPIRE].

    ADS  Article  Google Scholar 

  98. [98]

    K. Werner, I. Karpenko, T. Pierog, M. Bleicher and K. Mikhailov, Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions, Phys. Rev. C 82 (2010) 044904 [arXiv:1004.0805] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    K. Werner, I. Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, Jets, bulk matter and their interaction in heavy ion collisions at several TeV, Phys. Rev. C 85 (2012) 064907 [arXiv:1203.5704] [INSPIRE].

    ADS  Google Scholar 

  100. [100]

    R. Baier, Y.L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium, Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].

  101. [101]

    E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors