Advertisement

Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term

  • Miguel Crispim RomãoEmail author
  • Stephen F. King
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a simple modification of the no-scale supergravity Wess-Zumino model of Starobinsky-like inflation to include a Polonyi term in the superpotential. The purpose of this term is to provide an explicit mechanism for supersymmetry breaking at the end of inflation. We show how successful inflation can be achieved for a gravitino mass satisfying the strict upper bound m 3/2 < 103 TeV, with favoured values \( {m}_{3/2}\lesssim \mathcal{O}(1) \) TeV. The model suggests that SUSY may be discovered in collider physics experiments such as the LHC or the FCC.

Keywords

Cosmology of Theories beyond the SM Supergravity Models Beyond Standard Model 

References

  1. [1]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. 108B (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1.Google Scholar
  8. [8]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].
  9. [9]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  10. [10]
    J. Martin, C. Ringeval and V. Vennin, Encyclopaedia inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].
  11. [11]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. 91B (1980) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  13. [13]
    A.A. Starobinsky, The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter Cosmology and the Microwave Background Anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Linde, M. Noorbala and A. Westphal, Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP 03 (2011) 013 [arXiv:1101.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal Symmetry, NMSSM and Inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
  18. [18]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [INSPIRE].
  19. [19]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Cosmological Inflation Cries Out for Supersymmetry, Phys. Lett. 118B (1982) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Fluctuations in a Supersymmetric Inflationary Universe, Phys. Lett. 120B (1983) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.H. Lyth, A Bound on Inflationary Energy Density From the Isotropy of the Microwave Background, Phys. Lett. 147B (1984) 403 [Erratum ibid. B 150 (1985) 465] [INSPIRE].
  23. [23]
    F. Björkeroth, S.F. King, K. Schmitz and T.T. Yanagida, Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale, Nucl. Phys. B 916 (2017) 688 [arXiv:1608.04911] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    K. Harigaya, M. Kawasaki and T.T. Yanagida, Lower bound of the tensor-to-scalar ratio r≳0.1 in a nearly quadratic chaotic inflation model in supergravity, Phys. Lett. B 741 (2015) 267 [arXiv:1410.7163] [INSPIRE].
  25. [25]
    S. Hellerman, J. Kehayias and T.T. Yanagida, Chaotic Inflation from Nonlinear σ-models in Supergravity, Phys. Lett. B 742 (2015) 390 [arXiv:1411.3720] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Schmitz and T.T. Yanagida, Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation, Phys. Rev. D 94 (2016) 074021 [arXiv:1604.04911] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Antusch and D. Nolde, Realising effective theories of tribrid inflation: Are there effects from messenger fields?, JCAP 09 (2015) 055 [arXiv:1505.06910] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Antusch and K. Dutta, Non-thermal Gravitino Production in Tribrid Inflation, Phys. Rev. D 92 (2015) 083503 [arXiv:1505.04022] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos, K.A. Olive and M. Srednicki, SU(N, 1) inflation, Phys. Lett. B 152 (1985) 175 [Erratum ibid. B 156 (1985) 452].Google Scholar
  30. [30]
    P. Binetruy and M.K. Gaillard, Noncompact symmetries and scalar masses in superstring-inspired models, Phys. Lett. B 195 (1987) 382 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev. D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].
  32. [32]
    S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King and P.M. Kostka, Chaotic Inflation in Supergravity with Heisenberg Symmetry, Phys. Lett. B 679 (2009) 428 [arXiv:0905.0905] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Antusch, K. Dutta, J. Erdmenger and S. Halter, Towards Matter Inflation in Heterotic String Theory, JHEP 04 (2011) 065 [arXiv:1102.0093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Antusch and F. Cefalà, SUGRA New Inflation with Heisenberg Symmetry, JCAP 10 (2013) 055 [arXiv:1306.6825] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].
  36. [36]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Polynomial Chaotic Inflation in the Planck Era, Phys. Lett. B 725 (2013) 111 [arXiv:1303.7315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Croon, J. Ellis and N.E. Mavromatos, Wess-Zumino Inflation in Light of Planck, Phys. Lett. B 724 (2013) 165 [arXiv:1303.6253] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett. 111 (2013) 111301 [Erratum ibid. 111 (2013) 129902] [arXiv:1305.1247] [INSPIRE].
  44. [44]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model, JCAP 11 (2016) 018 [arXiv:1609.05849] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric Moduli Stabilization and High-Scale Inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    T. Li, Z. Li and D.V. Nanopoulos, Supergravity Inflation with Broken Shift Symmetry and Large Tensor-to-Scalar Ratio, JCAP 02 (2014) 028 [arXiv:1311.6770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    S. Antusch, K. Dutta, J. Erdmenger and S. Halter, Towards Matter Inflation in Heterotic String Theory, JHEP 04 (2011) 065 [arXiv:1102.0093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King and P.M. Kostka, Chaotic Inflation in Supergravity with Heisenberg Symmetry, Phys. Lett. B 679 (2009) 428 [arXiv:0905.0905] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King and P.M. Kostka, Solving the eta-Problem in Hybrid Inflation with Heisenberg Symmetry and Stabilized Modulus, JCAP 01 (2009) 040 [arXiv:0808.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev. D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].
  55. [55]
    P. Binétruy and M.K. Gaillard, Candidates for the Inflaton Field in Superstring Models, Phys. Rev. D 34 (1986) 3069 [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Enqvist, D.V. Nanopoulos and M. Quiros, Inflation From a Ripple on a Vanishing Potential, Phys. Lett. B 159 (1985) 249.ADSCrossRefGoogle Scholar
  57. [57]
    M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of Cosmological Inflation Attractors, Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B.J. Broy, M. Galante, D. Roest and A. Westphal, Pole inflation — Shift symmetry and universal corrections, JHEP 12 (2015) 149 [arXiv:1507.02277] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2017

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations