Advertisement

NNLO QCD corrections to jet production in deep inelastic scattering

  • James Currie
  • Thomas Gehrmann
  • Alexander Huss
  • Jan NiehuesEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Hadronic jets in deeply inelastic electron-proton collisions are produced by the scattering of a parton from the proton with the virtual gauge boson mediating the interaction. The HERA experiments have performed precision measurements of inclusive single jet production and di-jet production in the Breit frame, which provide important constraints on the strong coupling constant and on parton distributions in the proton. We describe the calculation of the next-to-next-to-leading order (NNLO) QCD corrections to these processes, and assess their size and impact. A detailed comparison with data from the H1 and ZEUS experiments highlights that inclusive single jet production displays a better perturbative convergence than di-jet production. We also observe that the event selection cuts in some of the di-jet measurements of both H1 and ZEUS induce an infrared sensitivity that destabilises the perturbative stability of the predictions. Our results open up new opportunities for QCD precision studies with jet production observables in deep inelastic scattering.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Devenish and A. Cooper-Sarkar, Deep inelastic scattering, Oxford University Press, Oxford (2004).Google Scholar
  2. [2]
    P. Newman and M. Wing, The Hadronic Final State at HERA, Rev. Mod. Phys. 86 (2014) 1037 [arXiv:1308.3368] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K.H. Streng, T.F. Walsh and P.M. Zerwas, Quark and Gluon Jets in the Breit Frame of Lepton-Nucleon Scattering, Z. Phys. C 2 (1979) 237 [INSPIRE].ADSGoogle Scholar
  4. [4]
    R.D. Peccei and R. Rückl, Energy Flow and Energy Correlations in Deep Inelastic Scattering, Nucl. Phys. B 162 (1980) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Rumpf, G. Kramer and J. Willrodt, Jet Cross-sections in Leptoproduction From QCD, Z. Phys. C 7 (1981) 337 [INSPIRE].ADSGoogle Scholar
  6. [6]
    H1 collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross-sections in deep inelastic positron-proton collisions at \( \sqrt{s} \) of 300-GeV, Eur. Phys. J. C 19 (2001) 289 [hep-ex/0010054] [INSPIRE].
  7. [7]
    H1 collaboration, C. Adloff et al., Measurement of inclusive jet cross-sections in deep inelastic ep scattering at HERA, Phys. Lett. B 542 (2002) 193 [hep-ex/0206029] [INSPIRE].
  8. [8]
    H1 collaboration, A. Aktas et al., Inclusive dijet production at low Bjorken x in deep inelastic scattering, Eur. Phys. J. C 33 (2004) 477 [hep-ex/0310019] [INSPIRE].
  9. [9]
    H1 collaboration, A. Aktas et al., Measurement of inclusive jet production in deep-inelastic scattering at high Q 2 and determination of the strong coupling, Phys. Lett. B 653 (2007) 134 [arXiv:0706.3722] [INSPIRE].
  10. [10]
    H1 collaboration, F.D. Aaron et al., Jet Production in ep Collisions at High Q 2 and Determination of α s, Eur. Phys. J. C 65 (2010) 363 [arXiv:0904.3870] [INSPIRE].
  11. [11]
    H1 collaboration, V. Andreev et al., Measurement of multijet production in ep collisions at high Q 2 and determination of the strong coupling αs, Eur. Phys. J. C 75 (2015) 65 [arXiv:1406.4709] [INSPIRE].
  12. [12]
    H1 collaboration, V. Andreev et al., Measurement of Jet Production Cross sections in Deep-inelastic ep Scattering at HERA, Eur. Phys. J. C 77 (2017) 215 [arXiv:1611.03421] [INSPIRE].
  13. [13]
    ZEUS collaboration, J. Breitweg et al., Measurement of dijet production in neutral current deep inelastic scattering at high Q 2 and determination of αs, Phys. Lett. B 507 (2001) 70 [hep-ex/0102042] [INSPIRE].
  14. [14]
    ZEUS collaboration, S. Chekanov et al., Inclusive jet cross-sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of αs, Phys. Lett. B 547 (2002) 164 [hep-ex/0208037] [INSPIRE].
  15. [15]
    ZEUS collaboration, S. Chekanov et al., Multijet production in neutral current deep inelastic scattering at HERA and determination of αs, Eur. Phys. J. C 44 (2005) 183 [hep-ex/0502007] [INSPIRE].
  16. [16]
    ZEUS collaboration, S. Chekanov et al., Inclusive-jet and dijet cross-sections in deep inelastic scattering at HERA, Nucl. Phys. B 765 (2007) 1 [hep-ex/0608048] [INSPIRE].
  17. [17]
    ZEUS collaboration, S. Chekanov et al., Jet-radius dependence of inclusive-jet cross-sections in deep inelastic scattering at HERA, Phys. Lett. B 649 (2007) 12 [hep-ex/0701039] [INSPIRE].
  18. [18]
    ZEUS collaboration, H. Abramowicz et al., Inclusive-jet cross sections in NC DIS at HERA and a comparison of the kT, anti-kT and SIScone jet algorithms, Phys. Lett. B 691 (2010) 127 [arXiv:1003.2923] [INSPIRE].
  19. [19]
    ZEUS collaboration, H. Abramowicz et al., Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA, Eur. Phys. J. C 70 (2010) 965 [arXiv:1010.6167] [INSPIRE].
  20. [20]
    D. Graudenz, Next-to-leading order QCD corrections to jet cross-sections and jet rates in deeply inelastic electron proton scattering, Phys. Rev. D 49 (1994) 3291 [hep-ph/9307311] [INSPIRE].
  21. [21]
    D. Graudenz, Disaster++: Version 1.0, hep-ph/9710244 [INSPIRE].
  22. [22]
    E. Mirkes and D. Zeppenfeld, Dijet production at HERA in next-to-leading order, Phys. Lett. B 380 (1996) 205 [hep-ph/9511448] [INSPIRE].
  23. [23]
    M. Klasen, G. Kramer and B. Pötter, Inclusive jet production with virtual photons in next-to-leading order QCD, Eur. Phys. J. C 1 (1998) 261 [hep-ph/9703302] [INSPIRE].
  24. [24]
    B. Pötter, JetViP 1.1: Calculating one- and two-jet cross sections with virtual photons in NLO QCD, Comput. Phys. Commun. 119 (1999) 45 [hep-ph/9806437] [INSPIRE].
  25. [25]
    Z. Nagy and Z. Trócsányi, Multijet cross-sections in deep inelastic scattering at next-to-leading order, Phys. Rev. Lett. 87 (2001) 082001 [hep-ph/0104315] [INSPIRE].
  26. [26]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  27. [27]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  28. [28]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].
  30. [30]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].
  31. [31]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  32. [32]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
  33. [33]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
  34. [34]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
  35. [35]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Boughezal, X. Liu and F. Petriello, N -jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: Integrating the subtraction terms. I, JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].
  42. [42]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
  45. [45]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].
  46. [46]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ →4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, EERAD3: Event shapes and jet rates in electron-positron annihilation at order α s3, Comput. Phys. Commun. 185 (2014) 3331 [arXiv:1402.4140] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Grazzini, S. Kallweit and D. Rathlev, W γ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].ADSGoogle Scholar
  58. [58]
    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, NNLO QCD corrections for Drell-Yan p TZ and ϕ observables at the LHC, JHEP 11 (2016) 094 [arXiv:1610.01843] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.M. Campbell, R.K. Ellis and C. Williams, Direct photon production at next-to-next-to-leading order, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G. Abelof, R. Boughezal, X. Liu and F. Petriello, Single-inclusive jet production in electron-nucleon collisions through next-to-next-to-leading order in perturbative QCD, Phys. Lett. B 763 (2016) 52 [arXiv:1607.04921] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Currie, E.W.N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, arXiv:1705.10271 [INSPIRE].
  73. [73]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Currie, T. Gehrmann and J. Niehues, Precise QCD predictions for the production of dijet final states in deep inelastic scattering, Phys. Rev. Lett. 117 (2016) 042001 [arXiv:1606.03991] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    K. Hagiwara and D. Zeppenfeld, Amplitudes for Multiparton Processes Involving a Current at e + e , e ± p and Hadron Colliders, Nucl. Phys. B 313 (1989) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    F.A. Berends, W.T. Giele and H. Kuijf, Exact Expressions for Processes Involving a Vector Boson and Up to Five Partons, Nucl. Phys. B 321 (1989) 39 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    N.K. Falck, D. Graudenz and G. Kramer, Cross-section for Five Jet Production in e + e Annihilation, Nucl. Phys. B 328 (1989) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    E.W.N. Glover and D.J. Miller, The One loop QCD corrections for \( {\gamma}^{\ast}\to Q\overline{Q}q\overline{q} \), Phys. Lett. B 396 (1997) 257 [hep-ph/9609474] [INSPIRE].
  79. [79]
    Z. Bern, L.J. Dixon, D.A. Kosower and S. Weinzierl, One loop amplitudes for \( {e}^{+}{e}^{-}\to \overline{q}q\overline{Q}Q \), Nucl. Phys. B 489 (1997) 3 [hep-ph/9610370] [INSPIRE].
  80. [80]
    J.M. Campbell, E.W.N. Glover and D.J. Miller, The One loop QCD corrections for \( {\gamma}^{\ast}\to q\overline{q} gg \), Phys. Lett. B 409 (1997) 503 [hep-ph/9706297] [INSPIRE].
  81. [81]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
  82. [82]
    L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, The two loop QCD matrix element for e + e → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].
  83. [83]
    L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e + e → 3 jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].
  84. [84]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {Z}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].ADSGoogle Scholar
  87. [87]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].
  91. [91]
    D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097] [INSPIRE].
  92. [92]
    J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron-positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [INSPIRE].
  93. [93]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
  94. [94]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  95. [95]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  96. [96]
    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  97. [97]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  99. [99]
    E.W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefzbMATHGoogle Scholar
  100. [100]
    A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, Real-Virtual corrections for gluon scattering at NNLO, JHEP 02 (2012) 141 [arXiv:1112.3613] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  101. [101]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].
  102. [102]
    T. Gehrmann and E.W.N. Glover, Two-Loop QCD Helicity Amplitudes for (2+1)-Jet Production in Deep Inelastic Scattering, Phys. Lett. B 676 (2009) 146 [arXiv:0904.2665] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  104. [104]
    T. Carli, T. Gehrmann and S. Hoeche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    T. Biekötter, M. Klasen and G. Kramer, Next-to-next-to-leading order contributions to inclusive jet production in deep-inelastic scattering and determination of αs, Phys. Rev. D 92 (2015) 074037 [arXiv:1508.07153] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S. Catani and B.R. Webber, Infrared safe but infinite: Soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].
  107. [107]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • James Currie
    • 1
  • Thomas Gehrmann
    • 2
  • Alexander Huss
    • 3
  • Jan Niehues
    • 2
    Email author
  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  2. 2.Department of PhysicsUniversität ZürichZürichSwitzerland
  3. 3.Institute for Theoretical Physics, ETHZürichSwitzerland

Personalised recommendations