Search for \( \mathrm{t}\overline{\mathrm{t}} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV
A search for the production of heavy resonances decaying into top quark-antiquark pairs is presented. The analysis is performed in the lepton+jets and fully hadronic channels using data collected in proton-proton collisions at \( \sqrt{s}=13 \) TeV using the CMS detector at the LHC, corresponding to an integrated luminosity of 2.6 fb−1. The selection is optimized for massive resonances, where the top quarks have large Lorentz boosts. No evidence for resonant \( \mathrm{t}\overline{\mathrm{t}} \) production is found in the data, and upper limits on the production cross section of heavy resonances are set. The exclusion limits for resonances with masses above 2 TeV are significantly improved compared to those of previous analyses at \( \sqrt{s}=8 \) TeV.
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
J.L. Rosner, Prominent decay modes of a leptophobic Z′, Phys. Lett.B 387 (1996) 113 [hep-ph/9607207] [INSPIRE].
[2]
K.R. Lynch, E.H. Simmons, M. Narain and S. Mrenna, Finding Z′ bosons coupled preferentially to the third family at LEP and the Tevatron, Phys. Rev.D 63 (2001) 035006 [hep-ph/0007286] [INSPIRE].
[3]
M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z′ gauge bosons at the Tevatron, Phys. Rev.D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
[4]
C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett.B 266 (1991) 419 [INSPIRE].ADSCrossRefGoogle Scholar
P.H. Frampton and S.L. Glashow, Chiral color: an alternative to the standard model, Phys. Lett.B 190 (1987) 157 [INSPIRE].ADSCrossRefGoogle Scholar
[9]
D. Choudhury, R.M. Godbole, R.K. Singh and K. Wagh, Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles, Phys. Lett.B 657 (2007) 69 [arXiv:0705.1499] [INSPIRE].ADSCrossRefGoogle Scholar
[10]
R.M. Godbole and D. Choudhury, Nonstandard, strongly interacting spin one tt resonances, in the proceedings of the 34thInternational Conference on High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania, July 30–August 5 (2008), arXiv:0810.3635 [INSPIRE].
[11]
D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett.B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
[12]
K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev.D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].
CDF collaboration, T. Aaltonen et al., A search for resonant production of\( t\overline{t} \)pairs in 4.8 fb−1of integrated luminosity of\( p\overline{p} \)collisions at\( \sqrt{s}=1.96 \)TeV, Phys. Rev.D 84 (2011) 072004 [arXiv:1107.5063] [INSPIRE].
[18]
D0 collaboration, V.M. Abazov et al., Search for a narrow\( t\overline{t} \)resonance in\( p\overline{p} \)collisions at\( \sqrt{s}=1.96 \)TeV, Phys. Rev.D 85 (2012) 051101 [arXiv:1111.1271] [INSPIRE].
[19]
CMS collaboration, Search for anomalous\( t\overline{t} \)production in the highly-boosted all-hadronic final state, JHEP09 (2012) 029 [Erratum ibid. 03 (2014) 132] [arXiv:1204.2488] [INSPIRE].
[20]
ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at\( \sqrt{s}=7 \)TeV, JHEP01 (2013) 116 [arXiv:1211.2202] [INSPIRE].
[21]
ATLAS collaboration, Search for\( t\overline{t} \)resonances in the lepton plus jets final state with ATLAS using 4.7 fb−1of pp collisions at\( \sqrt{s}=7 \)TeV, Phys. Rev.D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].
[22]
ATLAS collaboration, A search for\( t\overline{t} \)resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at\( \sqrt{s}=7 \)TeV with the ATLAS detector, JHEP09 (2012) 041 [arXiv:1207.2409] [INSPIRE].
[23]
CMS collaboration, Search for resonant\( t\overline{t} \)production in lepton+jets events in pp collisions at\( \sqrt{s}=7 \)TeV, JHEP12 (2012) 015 [arXiv:1209.4397] [INSPIRE].
[24]
CMS collaboration, Search for Z′ resonances decaying to\( t\overline{t} \)in dilepton+jets final states in pp collisions at\( \sqrt{s}=7 \)TeV, Phys. Rev.D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].
[25]
CMS collaboration, Searches for new physics using the\( t\overline{t} \)invariant mass distribution in pp collisions at\( \sqrt{s}=8 \)TeV, Phys. Rev. Lett.111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].
[26]
ATLAS collaboration, A search for\( t\overline{t} \)resonances using lepton-plus-jets events in proton-proton collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, JHEP08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
[27]
CMS collaboration, Search for resonant\( t\overline{t} \)production in proton-proton collisions at\( \sqrt{s}=8 \)TeV, Phys. Rev.D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
[28]
G. Altarelli, B. Mele and M. Ruiz-Altaba, Searching for new heavy vector bosons in\( p\overline{p} \)colliders, Z. Phys.C 45 (1989) 109 [Erratum ibid. C 47 (1990) 676] [INSPIRE].
[29]
CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST3 S08004 [INSPIRE].
[30]
CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001 (2009).
[31]
CMS collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001 (2010).
[32]
CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST9 P10009 [arXiv:1405.6569] [INSPIRE].
[33]
CMS collaboration, Performance of CMS muon reconstruction in pp collision events at\( \sqrt{s}=7 \)TeV, 2012 JINST7 P10002 [arXiv:1206.4071] [INSPIRE].
[34]
CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at\( \sqrt{s}=8 \)TeV, 2015 JINST10 P06005 [arXiv:1502.02701] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
[50]
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
[51]
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
[52]
M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP01 (2007) 013 [hep-ph/0611129] [INSPIRE].
[53]
P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
[54]
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
[55]
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[56]
S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
[57]
E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J.C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
[58]
M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun.185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
[59]
Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev.D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].ADSGoogle Scholar
[60]
P. Kant et al., HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun.191 (2015) 74 [arXiv:1406.4403] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
N. Kidonakis, Top quark production, in the proceedings of the Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013), July 15–28, Dubna, Russia (2014).Google Scholar
[70]
M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun.182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
[71]
M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE].
[72]
CMS collaboration, CMS luminosity measurement for the 2015 data-taking period, CMS-PAS-LUM-15-001 (2015).
[73]
CMS collaboration, Measurement of the inelastic proton-proton cross section at\( \sqrt{s}=13 \)TeV, CMS-PAS-FSQ-15-005 (2015).
[74]
A. O’Hagan and J.J. Forster, Kendall’s Advanced Theory of Statistics. Volume 2B: Bayesian Inference, Arnold, London U.K. (2004.)Google Scholar
[75]
R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun.77 (1993) 219 [INSPIRE].ADSCrossRefGoogle Scholar
[76]
R. Bonciani, T. Jezo, M. Klasen, F. Lyonnet and I. Schienbein, Electroweak top-quark pair production at the LHC with Z′ bosons to NLO QCD in POWHEG, JHEP02 (2016) 141 [arXiv:1511.08185] [INSPIRE].ADSCrossRefGoogle Scholar
[77]
J. Gao, C.S. Li, B.H. Li, C.P. Yuan and H.X. Zhu, Next-to-leading order QCD corrections to the heavy resonance production and decay into top quark pair at the LHC, Phys. Rev.D 82 (2010) 014020 [arXiv:1004.0876] [INSPIRE].ADSGoogle Scholar