Digamma, what next?

  • Roberto Franceschini
  • Gian F. Giudice
  • Jernej F. Kamenik
  • Matthew McCullough
  • Francesco Riva
  • Alessandro Strumia
  • Riccardo Torre
Open Access
Regular Article - Theoretical Physics

Abstract

If the 750 GeV resonance in the diphoton channel is confirmed, what are the measurements necessary to infer the properties of the new particle and understand its nature? We address this question in the framework of a single new scalar particle, called digamma (Ϝ). We describe it by an effective field theory, which allows us to obtain general and model-independent results, and to identify the most useful observables, whose relevance will remain also in model-by-model analyses. We derive full expressions for the leading-order processes and compute rates for higher-order decays, digamma production in association with jets, gauge or Higgs bosons, and digamma pair production. We illustrate how measurements of these higher-order processes can be used to extract couplings, quantum numbers, and properties of the new particle.

Keywords

Phenomenological Models 

References

  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081, CERN, Geneva Switzerland (2015).
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004, CERN, Geneva Switzerland (2015).
  3. [3]
    ATLAS collaboration, M. Delmastro, Diphoton searches in ATLAS, talk at the Moriond 2016 conference, https://indico.in2p3.fr/e/moriondEW2016, La Thuile Italy (2016).
  4. [4]
    CMS collaboration, P. Musella, Diphoton searches in CMS, talk at the Moriond 2016 conference, https://indico.in2p3.fr/e/moriondEW2016, La Thuile Italy (2016).
  5. [5]
    ATLAS collaboration, Search for resonances in diphoton events with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-018, CERN, Geneva Switzerland (2016).
  6. [6]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 fb −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018, CERN, Geneva Switzerland (2016).
  7. [7]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the interpretation of a possible ∼ 750 GeV particle decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].
  10. [10]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].
  11. [11]
    P. Agrawal, J. Fan, B. Heidenreich, M. Reece and M. Strassler, Experimental considerations motivated by the diphoton excess at the LHC, JHEP 06 (2016) 082 [arXiv:1512.05775] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.S. Kim, K. Rolbiecki and R. Ruiz de Austri, Model-independent combination of diphoton constraints at 750 GeV, Eur. Phys. J. C 76 (2016) 251 [arXiv:1512.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV diphoton resonance at the LHC, Phys. Rev. D 93 (2016) 095018 [arXiv:1512.04939] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Jung, J. Song and Y.W. Yoon, How resonance-continuum interference changes 750 GeV diphoton excess: signal enhancement and peak shift, JHEP 05 (2016) 009 [arXiv:1601.00006] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV portal: LHC phenomenology and dark matter candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M. Fabbrichesi and A. Urbano, The breaking of the SU(2)L × U(1)Y symmetry: the 750 GeV resonance at the LHC and perturbative unitarity, arXiv:1601.02447 [INSPIRE].
  17. [17]
    J. Cao, L. Shang, W. Su, Y. Zhang and J. Zhu, Interpreting the 750 GeV diphoton excess in the minimal dilaton model, Eur. Phys. J. C 76 (2016) 239 [arXiv:1601.02570] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Djouadi, J. Ellis, R. Godbole and J. Quevillon, Future collider signatures of the possible 750 GeV state, JHEP 03 (2016) 205 [arXiv:1601.03696] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.R. Buckley, Wide or narrow? The phenomenology of 750 GeV diphotons, Eur. Phys. J. C 76 (2016) 345 [arXiv:1601.04751] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Bernon, A. Goudelis, S. Kraml, K. Mawatari and D. Sengupta, Characterising the 750 GeV diphoton excess, JHEP 05 (2016) 128 [arXiv:1603.03421] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Panico, L. Vecchi and A. Wulzer, Resonant diphoton phenomenology simplified, JHEP 06 (2016) 184 [arXiv:1603.04248] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.F. Kamenik, B.R. Safdi, Y. Soreq and J. Zupan, Comments on the diphoton excess: critical reappraisal of effective field theory interpretations, JHEP 07 (2016) 042 [arXiv:1603.06566] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Cynolter, J. . Kovács and E. Lendvai, Diphoton excess and V V -scattering, Mod. Phys. Lett. A 31 (2016) 1650133 [arXiv:1604.01008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    W. Chao, R. Huo and J.-H. Yu, The minimal scalar-stealth top interpretation of the diphoton excess, arXiv:1512.05738 [INSPIRE].
  25. [25]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, Phys. Rev. D 93 (2016) 055032 [arXiv:1512.05439] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.D. McDermott, P. Meade and H. Ramani, Singlet scalar resonances and the diphoton excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Kobakhidze, F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV diphoton resonance in a top and bottom seesaw model, Phys. Lett. B 757 (2016) 92 [arXiv:1512.05585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton excess at 750 GeV from a radion in the bulk-Higgs scenario, arXiv:1512.05618 [INSPIRE].
  30. [30]
    A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].
  31. [31]
    E. Megias, O. Pujolàs and M. Quirós, On dilatons and the LHC diphoton excess, JHEP 05 (2016) 137 [arXiv:1512.06106] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Ghosh, A. Kundu and S. Ray, Potential of a singlet scalar enhanced Standard Model, Phys. Rev. D 93 (2016) 115034 [arXiv:1512.05786] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Cao, C. Han, L. Shang, W. Su, J.M. Yang and Y. Zhang, Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise model, Phys. Lett. B 755 (2016) 456 [arXiv:1512.06728] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    I. Chakraborty and A. Kundu, Diphoton excess at 750 GeV: singlet scalars confront triviality, Phys. Rev. D 93 (2016) 055003 [arXiv:1512.06508] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H. Han, S. Wang and S. Zheng, Scalar explanation of diphoton excess at LHC, Nucl. Phys. B 907 (2016) 180 [arXiv:1512.06562] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    S. Chang, A simple U(1) gauge theory explanation of the diphoton excess, Phys. Rev. D 93 (2016) 055016 [arXiv:1512.06426] [INSPIRE].
  38. [38]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.W. Murphy, Vector leptoquarks and the 750 GeV diphoton resonance at the LHC, Phys. Lett. B 757 (2016) 192 [arXiv:1512.06976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect constraints on the scalar di-photon resonance at the LHC, JHEP 05 (2016) 187 [arXiv:1512.08500] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Gao, H. Zhang and H.X. Zhu, Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?, Eur. Phys. J. C 76 (2016) 348 [arXiv:1512.08478] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Chakraborty, A. Chakraborty and S. Raychaudhuri, Diphoton resonance at 750 GeV in the broken MRSSM, arXiv:1512.07527 [INSPIRE].
  43. [43]
    K. Cheung, P. Ko, J.S. Lee, J. Park and P.-Y. Tseng, A Higgcision study on the 750 GeV di-photon resonance and 125 GeV SM Higgs boson with the Higgs-singlet mixing, arXiv:1512.07853 [INSPIRE].
  44. [44]
    C. Cai, Z.-H. Yu and H.-H. Zhang, 750 GeV diphoton resonance as a singlet scalar in an extra dimensional model, Phys. Rev. D 93 (2016) 075033 [arXiv:1512.08440] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Li, Y.-N. Mao, Y.-L. Tang, C. Zhang, Y. Zhou and S.-H. Zhu, Pseudoscalar decaying only via loops as an explanation for the 750 GeV diphoton excess, Phys. Rev. Lett. 116 (2016) 151803 [arXiv:1512.08255] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Y.-L. Tang and S.-H. Zhu, NMSSM extended with vector-like particles and the diphoton excess on the LHC, arXiv:1512.08323 [INSPIRE].
  47. [47]
    Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, Diphoton excess, low energy theorem and the 331 model, Phys. Rev. D 93 (2016) 075030 [arXiv:1512.08441] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Chway, R. Derm´ıšek, T.H. Jung and H.D. Kim, Glue to light signal of a new particle, arXiv:1512.08221 [INSPIRE].
  49. [49]
    I. Low and J. Lykken, Implications of gauge invariance on a heavy diphoton resonance, arXiv:1512.09089 [INSPIRE].
  50. [50]
    B. Dutta et al., Diphoton excess in consistent supersymmetric SU(5) models with vector-like particles, arXiv:1601.00866 [INSPIRE].
  51. [51]
    J. Gu and Z. Liu, Physics implications of the diphoton excess from the perspective of renormalization group flow, Phys. Rev. D 93 (2016) 075006 [arXiv:1512.07624] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Kanemura, N. Machida, S. Odori and T. Shindou, Diphoton excess at 750 GeV in an extended scalar sector, arXiv:1512.09053 [INSPIRE].
  53. [53]
    S. Gopalakrishna, T.S. Mukherjee and S. Sadhukhan, Extra neutral scalars with vectorlike fermions at the LHC, Phys. Rev. D 93 (2016) 055004 [arXiv:1504.01074] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Abel and V.V. Khoze, Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop, JHEP 05 (2016) 063 [arXiv:1601.07167] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Kawamura and Y. Omura, Diphoton excess at 750 GeV and LHC constraints in models with vectorlike particles, Phys. Rev. D 93 (2016) 115011 [arXiv:1601.07396] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M.J. Dolan, J.L. Hewett, M. Krämer and T.G. Rizzo, Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology, JHEP 07 (2016) 039 [arXiv:1601.07208] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, On a possible large width 750 GeV diphoton resonance at ATLAS and CMS, arXiv:1512.05778 [INSPIRE].
  58. [58]
    A. Salvio, F. Staub, A. Strumia and A. Urbano, On the maximal diphoton width, JHEP 03 (2016) 214 [arXiv:1602.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: where else should we look for it?, Phys. Lett. B 757 (2016) 39 [arXiv:1512.06091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    H. Ito, T. Moroi and Y. Takaesu, Studying 750 GeV di-photon resonance at photon-photon collider, Phys. Lett. B 756 (2016) 147 [arXiv:1601.01144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. He, X.-G. He and Y. Tang, A γγ collider for the 750 GeV resonant state, Phys. Lett. B 759 (2016) 166 [arXiv:1603.00287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    C. Gross, O. Lebedev and J.M. No, Drell-Yan constraints on new electroweak states and the di-photon anomaly, arXiv:1602.03877 [INSPIRE].
  63. [63]
    K.J. Bae, M. Endo, K. Hamaguchi and T. Moroi, Diphoton excess and running couplings, Phys. Lett. B 757 (2016) 493 [arXiv:1602.03653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    Y. Hamada, H. Kawai, K. Kawana and K. Tsumura, Models of the LHC diphoton excesses valid up to the Planck scale, Phys. Rev. D 94 (2016) 014007 [arXiv:1602.04170] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Srivastava, Di-photon resonance around 750 GeV: shedding light on the theory underneath, arXiv:1512.05767 [INSPIRE].
  66. [66]
    F. Staub et al., Precision tools and models to narrow in on the 750 GeV diphoton resonance, arXiv:1602.05581 [INSPIRE].
  67. [67]
    L.M. Carpenter, R. Colburn and J. Goodman, Supersoft SUSY models and the 750 GeV diphoton excess, beyond effective operators, Phys. Rev. D 94 (2016) 015016 [arXiv:1512.06107] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Csáki and L. Randall, A diphoton resonance from bulk RS, JHEP 07 (2016) 061 [arXiv:1603.07303] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    N. Liu, W. Wang, M. Zhang and R. Zheng, 750 GeV diphoton resonance in a vector-like extension of Hill model, arXiv:1604.00728 [INSPIRE].
  70. [70]
    Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, A boost test of anomalous diphoton resonance at the LHC, arXiv:1512.05542 [INSPIRE].
  71. [71]
    W. Altmannshofer, J. Galloway, S. Gori, A.L. Kagan, A. Martin and J. Zupan, 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 095015 [arXiv:1512.07616] [INSPIRE].ADSGoogle Scholar
  72. [72]
    N. Craig, P. Draper, C. Kilic and S. Thomas, Shedding light on diphoton resonances, Phys. Rev. D 93 (2016) 115023 [arXiv:1512.07733] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  74. [74]
    I. Sahin, Semi-elastic cross section for a scalar resonance of mass 750 GeV, arXiv:1601.01676 [INSPIRE].
  75. [75]
    S. Fichet, G. von Gersdorff and C. Royon, Measuring the diphoton coupling of a 750 GeV resonance, Phys. Rev. Lett. 116 (2016) 231801 [arXiv:1601.01712] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon versus photon production of a 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095020 [arXiv:1601.00638] [INSPIRE].ADSGoogle Scholar
  77. [77]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The production of a diphoton resonance via photon-photon fusion, JHEP 03 (2016) 182 [arXiv:1601.07187] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A.D. Martin and M.G. Ryskin, Advantages of exclusive γγ production to probe high mass systems, J. Phys. G 43 (2016) 04LT02 [arXiv:1601.07774] [INSPIRE].
  80. [80]
    L. Bian, N. Chen, D. Liu and J. Shu, Hidden confining world on the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 095011 [arXiv:1512.05759] [INSPIRE].ADSGoogle Scholar
  81. [81]
    Y. Bai, J. Berger and R. Lu, 750 GeV dark pion: cousin of a dark G-parity odd WIMP, Phys. Rev. D 93 (2016) 076009 [arXiv:1512.05779] [INSPIRE].ADSGoogle Scholar
  82. [82]
    Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly and the 750 GeV diphoton, Phys. Rev. Lett. 116 (2016) 151802 [arXiv:1512.04924] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J.M. No, V. Sanz and J. Setford, See-saw composite Higgs model at the LHC: linking naturalness to the 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095010 [arXiv:1512.05700] [INSPIRE].ADSGoogle Scholar
  84. [84]
    D. Bečirević, E. Bertuzzo, O. Sumensari and R. Zukanovich Funchal, Can the new resonance at LHC be a CP-odd Higgs boson?, Phys. Lett. B 757 (2016) 261 [arXiv:1512.05623] [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    E. Molinaro, F. Sannino and N. Vignaroli, Minimal composite dynamics versus axion origin of the diphoton excess, arXiv:1512.05334 [INSPIRE].
  86. [86]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    I. Ben-Dayan and R. Brustein, Hypercharge axion and the diphoton 750 GeV resonance, arXiv:1601.07564 [INSPIRE].
  88. [88]
    A. Pilaftsis, Diphoton signatures from heavy axion decays at the CERN Large Hadron Collider, Phys. Rev. D 93 (2016) 015017 [arXiv:1512.04931] [INSPIRE].ADSGoogle Scholar
  89. [89]
    N.D. Barrie, A. Kobakhidze, M. Talia and L. Wu, 750 GeV composite axion as the LHC diphoton resonance, Phys. Lett. B 755 (2016) 343 [arXiv:1602.00475] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    E. Molinaro, F. Sannino and N. Vignaroli, Collider tests of (composite) diphoton resonances, arXiv:1602.07574 [INSPIRE].
  91. [91]
    M. Redi, A. Strumia, A. Tesi and E. Vigiani, Di-photon resonance and dark matter as heavy pions, JHEP 05 (2016) 078 [arXiv:1602.07297] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    C.-W. Chiang, H. Fukuda, M. Ibe and T.T. Yanagida, 750 GeV diphoton resonance in a visible heavy QCD axion model, Phys. Rev. D 93 (2016) 095016 [arXiv:1602.07909] [INSPIRE].ADSGoogle Scholar
  93. [93]
    A. Bharucha, A. Djouadi and A. Goudelis, Threshold enhancement of diphoton resonances, arXiv:1603.04464 [INSPIRE].
  94. [94]
    K. Harigaya and Y. Nomura, Hidden pion varieties in composite models for diphoton resonances, arXiv:1603.05774 [INSPIRE].
  95. [95]
    P. Ko, C. Yu and T.-C. Yuan, 750 GeV diphoton excess as a composite (pseudo)scalar boson from new strong interaction, arXiv:1603.08802 [INSPIRE].
  96. [96]
    M. Chala, C. Grojean, M. Riembau and T. Vantalon, Deciphering the CP nature of the 750 GeV resonance, Phys. Lett. B 760 (2016) 220 [arXiv:1604.02029] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, The QCD axion from aligned axions and diphoton excess, Phys. Lett. B 755 (2016) 13 [arXiv:1512.05295] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J.E. Kim, Is an axizilla possible for di-photon resonance?, Phys. Lett. B 755 (2016) 190 [arXiv:1512.08467] [INSPIRE].ADSGoogle Scholar
  100. [100]
    L.E. Ibáñez and V. Martin-Lozano, A megaxion at 750 GeV as a first hint of low scale string theory, JHEP 07 (2016) 021 [arXiv:1512.08777] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    K. Ghorbani and H. Ghorbani, The 750 GeV diphoton excess from a pseudoscalar in fermionic dark matter scenario, arXiv:1601.00602 [INSPIRE].
  102. [102]
    D. Stolarski and R. Vega-Morales, Probing a virtual diphoton excess, Phys. Rev. D 93 (2016) 055008 [arXiv:1601.02004] [INSPIRE].ADSGoogle Scholar
  103. [103]
    U. Ellwanger and C. Hugonie, A 750 GeV diphoton signal from a very light pseudoscalar in the NMSSM, JHEP 05 (2016) 114 [arXiv:1602.03344] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Di Chiara, A. Hektor, K. Kannike, L. Marzola and M. Raidal, Large loop-coupling enhancement of a 750 GeV pseudoscalar from a light dark sector, arXiv:1603.07263 [INSPIRE].
  105. [105]
    T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev. D 93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].ADSGoogle Scholar
  106. [106]
    P. Lebiedowicz, M. Luszczak, R. Pasechnik and A. Szczurek, Can the diphoton enhancement at 750 GeV be due to a neutral technipion?, Phys. Rev. D 94 (2016) 015023 [arXiv:1604.02037] [INSPIRE].Google Scholar
  107. [107]
    A. Kusenko, L. Pearce and L. Yang, Leptogenesis via the 750 GeV pseudoscalar, Phys. Rev. D 93 (2016) 115005 [arXiv:1604.02382] [INSPIRE].ADSGoogle Scholar
  108. [108]
    ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-070, CERN, Geneva Switzerland (2015).
  109. [109]
    ATLAS collaboration, Search for neutral minimal supersymmetric Standard Model Higgs bosons H/Aττ produced in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-061, CERN, Geneva Switzerland (2015).
  110. [110]
    ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-010, CERN, Geneva Switzerland (2016).
  111. [111]
    ATLAS collaboration, Search for diboson resonances in the ℓℓqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071, CERN, Geneva Switzerland (2015).
  112. [112]
    ATLAS collaboration, Search for new resonances decaying to a W or Z boson and a Higgs boson in the \( \ell \ell b\overline{b} \) , \( \ell \nu b\overline{b} \) and \( \nu \nu b\overline{b} \) channels in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-074, CERN, Geneva Switzerland (2015).
  113. [113]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-017, CERN, Geneva Switzerland (2016).
  114. [114]
    ATLAS collaboration, Search for W W/W Z resonance production in the ℓνqq final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-075, CERN, Geneva Switzerland (2015).
  115. [115]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, arXiv:1604.07773 [INSPIRE].
  116. [116]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run 2, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  117. [117]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  118. [118]
    M. Bauer, C. Hoerner and M. Neubert, Diphoton resonance from a warped extra dimension, arXiv:1603.05978 [INSPIRE].
  119. [119]
    R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the Standard Model effective field theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  120. [120]
    J. Elias-Miro, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    B. Gripaios and D. Sutherland, An operator basis for the Standard Model with an added scalar singlet, arXiv:1604.07365 [INSPIRE].
  123. [123]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  124. [124]
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    R.P. Kauffman, S.V. Desai and D. Risal, Production of a Higgs boson plus two jets in hadronic collisions, Phys. Rev. D 55 (1997) 4005 [Erratum ibid. D 58 (1998) 119901] [hep-ph/9610541] [INSPIRE].
  126. [126]
    R.P. Kauffman, S.V. Desai and D. Risal, Amplitudes for Higgs bosons plus four partons, hep-ph/9903330 [INSPIRE].
  127. [127]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  128. [128]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    A.R. Barker, H. Huang, P.A. Toale and J. Engle, Radiative corrections to double Dalitz decays: effects on invariant mass distributions and angular correlations, Phys. Rev. D 67 (2003)033008 [hep-ph/0210174] [INSPIRE].
  130. [130]
    KTeV collaboration, E. Abouzaid et al., Determination of the parity of the neutral pion via the four-electron decay, Phys. Rev. Lett. 100 (2008) 182001 [arXiv:0802.2064] [INSPIRE].
  131. [131]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    G. Klamke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].
  133. [133]
    J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal angle correlations for Higgs boson plus multi-jet events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  134. [134]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    K. Cranmer, B. Mellado, W. Quayle and S.L. Wu, Search for Higgs bosons decay Hγγ using vector boson fusion, hep-ph/0401088 [INSPIRE].
  136. [136]
    F. James, Statistical methods in experimental physics, World Scientific, Hackensack U.S.A. (2006) [INSPIRE].CrossRefMATHGoogle Scholar
  137. [137]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  139. [139]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  140. [140]
    L. Di Luzio, J.F. Kamenik and M. Nardecchia, Implications of perturbative unitarity for the γγ resonance at 750 GeV, arXiv:1604.05746 [INSPIRE].
  141. [141]
    CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 747 (2015) 98 [arXiv:1412.7706] [INSPIRE].
  142. [142]
    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].
  143. [143]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  144. [144]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
  146. [146]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs particles, Sov. Phys. Usp. 23 (1980) 429 [Usp. Fiz. Nauk 131 (1980) 537] [INSPIRE].
  147. [147]
    M.B. Voloshin, Once again about the role of gluonic mechanism in interaction of light Higgs boson with hadrons, Sov. J. Nucl. Phys. 44 (1986) 478 [Yad. Fiz. 44 (1986) 738] [INSPIRE].
  148. [148]
    M.A. Shifman, Anomalies and low-energy theorems of quantum chromodynamics, Phys. Rept. 209 (1991) 341 [Sov. Phys. Usp. 32 (1989) 289] [Usp. Fiz. Nauk 157 (1989) 561] [INSPIRE].
  149. [149]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  150. [150]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
  151. [151]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  153. [153]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  154. [154]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
  155. [155]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].
  156. [156]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  157. [157]
    R. Franceschini and R. Torre, RPV stops bump off the background, Eur. Phys. J. C 73 (2013) 2422 [arXiv:1212.3622] [INSPIRE].ADSCrossRefGoogle Scholar
  158. [158]
    F. Bishara, Y. Grossman, R. Harnik, D.J. Robinson, J. Shu and J. Zupan, Probing CP-violation in hγγ with converted photons, JHEP 04 (2014) 084 [arXiv:1312.2955] [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Roberto Franceschini
    • 1
  • Gian F. Giudice
    • 1
  • Jernej F. Kamenik
    • 1
    • 2
    • 3
  • Matthew McCullough
    • 1
  • Francesco Riva
    • 1
  • Alessandro Strumia
    • 1
    • 4
  • Riccardo Torre
    • 5
  1. 1.CERN, Theoretical Physics DepartmentGenevaSwitzerland
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItaly
  5. 5.Institut de Théorie des Phénomènes Physiques, EPFLLausanneSwitzerland

Personalised recommendations