Advertisement

Impact of jet veto resummation on slepton searches

  • Frank J. Tackmann
  • Wouter J. Waalewijn
  • Lisa ZeuneEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Several searches for new physics at the LHC require a fixed number of signal jets, vetoing events with additional jets from QCD radiation. As the probed scale of new physics gets much larger than the jet-veto scale, such jet vetoes strongly impact the QCD perturbative series, causing nontrivial theoretical uncertainties. We consider slepton pair production with 0 signal jets, for which we perform the resummation of jet-veto logarithms and study its impact. Currently, the experimental exclusion limits take the jet-veto cut into account by extrapolating to the inclusive cross section using parton shower Monte Carlos. Our results indicate that the associated theoretical uncertainties can be large, and when taken into account have a sizeable impact already on present exclusion limits. This is improved by performing the resummation to higher order, which allows us to obtain accurate predictions even for high slepton masses. For the interpretation of the experimental results to benefit from improved theory predictions, it would be useful for the experimental analyses to also provide limits on the unfolded visible 0-jet cross section.

Keywords

Supersymmetry Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].
  2. [2]
    CMS collaboration, Search for direct production of bottom squark pairs, CMS-PAS-SUS-13-018 (2013).
  3. [3]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [arXiv:1506.08616] [INSPIRE].
  4. [4]
    ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2014) 096 [arXiv:1407.0350] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  6. [6]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].
  10. [10]
    CMS collaboration, Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 052011 [arXiv:1511.09375] [INSPIRE].
  11. [11]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].
  13. [13]
    CMS collaboration, Monophoton search, CMS-PAS-EXO-12-047 (2012).
  14. [14]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I.W. Stewart and F.J. Tackmann, Theory Uncertainties for Higgs and Other Searches Using Jet Bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].ADSGoogle Scholar
  23. [23]
    X. Liu and F. Petriello, Reducing theoretical uncertainties for exclusive Higgs-boson plus one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027 [arXiv:1303.4405] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at N N LL + N N LO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann and J.R. Walsh, Combining Resummed Higgs Predictions Across Jet Bins, Phys. Rev. D 89 (2014) 074044 [arXiv:1312.4535] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.Y. Shao, C.S. Li and H.T. Li, Resummation Prediction on Higgs and Vector Boson Associated Production with a Jet Veto at the LHC, JHEP 02 (2014) 117 [arXiv:1309.5015] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y. Li and X. Liu, High precision predictions for exclusive V H production at the LHC, JHEP 06 (2014) 028 [arXiv:1401.2149] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Moult and I.W. Stewart, Jet Vetoes interfering with HW W , JHEP 09 (2014) 129 [arXiv:1405.5534] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Jaiswal and T. Okui, Explanation of the W W excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Wang, C.S. Li and Z.L. Liu, Resummation prediction on gauge boson pair production with a jet veto, Phys. Rev. D 93 (2016) 094020 [arXiv:1504.00509] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Papucci, I.-W. Kim, K. Sakurai and A. Weiler, in preparation.Google Scholar
  37. [37]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  39. [39]
    B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP 01 (2014) 168 [arXiv:1310.2621] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Jager, A. von Manteuffel and S. Thier, Slepton pair production in the POWHEG BOX, JHEP 10 (2012) 130 [arXiv:1208.2953] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].
  44. [44]
    A. Broggio, M. Neubert and L. Vernazza, Soft-gluon resummation for slepton-pair production at hadron colliders, JHEP 05 (2012) 151 [arXiv:1111.6624] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].
  46. [46]
    B. Jäger, A. von Manteuffel and S. Thier, Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects, JHEP 02 (2015) 041 [arXiv:1410.3802] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  48. [48]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  49. [49]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  50. [50]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  51. [51]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  52. [52]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  53. [53]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  58. [58]
    A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].
  59. [59]
    S. Dawson, E. Eichten and C. Quigg, Search for Supersymmetric Particles in Hadron-Hadron Collisions, Phys. Rev. D 31 (1985) 1581 [INSPIRE].ADSGoogle Scholar
  60. [60]
    P. Chiappetta, J. Soffer and P. Taxil, Spin Asymmetries for Scalar Leptons From W and Z Decay in \( P\overline{P} \) Collisions, Phys. Lett. B 162 (1985) 192 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Detecting Sleptons at Hadron Colliders and Supercolliders, Phys. Rev. D 49 (1994) 3283 [hep-ph/9311248] [INSPIRE].
  63. [63]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    G. Bozzi, B. Fuks and M. Klasen, Slepton production in polarized hadron collisions, Phys. Lett. B 609 (2005) 339 [hep-ph/0411318] [INSPIRE].
  65. [65]
    M. Bisset, S. Raychaudhuri and P. Roy, Higgs mediated slepton pair production at the large hadron collider, hep-ph/9602430 [INSPIRE].
  66. [66]
    F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].ADSGoogle Scholar
  68. [68]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for alpha s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Jain, M. Procura, B. Shotwell and W.J. Waalewijn, Fragmentation with a Cut on Thrust: Predictions for B-factories, Phys. Rev. D 87 (2013) 074013 [arXiv:1207.4788] [INSPIRE].ADSGoogle Scholar
  70. [70]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  71. [71]
    D. Kang, C. Lee and I.W. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].ADSGoogle Scholar
  72. [72]
    Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].ADSGoogle Scholar
  73. [73]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P. Pietrulewicz, S. Gritschacher, A.H. Hoang, I. Jemos and V. Mateu, Variable Flavor Number Scheme for Final State Jets in Thrust, Phys. Rev. D 90 (2014) 114001 [arXiv:1405.4860] [INSPIRE].ADSGoogle Scholar
  75. [75]
    D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL +NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  80. [80]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m T 2, JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the Top Background of the Stop Search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  84. [84]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Eckel, M.J. Ramsey-Musolf, W. Shepherd and S. Su, Impact of LSP Character on Slepton Reach at the LHC, JHEP 11 (2014) 117 [arXiv:1408.2841] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    Y. Gershtein et al., Working Group Report: New Particles, Forces and Dimensions, arXiv:1311.0299 [INSPIRE].
  89. [89]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].
  90. [90]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].
  91. [91]
    A. Djouadi and M. Spira, SUSY-QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [INSPIRE].
  92. [92]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  93. [93]
    M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].ADSGoogle Scholar
  94. [94]
    T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  97. [97]
    G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  98. [98]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Frank J. Tackmann
    • 1
  • Wouter J. Waalewijn
    • 2
    • 3
  • Lisa Zeune
    • 3
    Email author
  1. 1.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  2. 2.ITFA, University of AmsterdamAmsterdamThe Netherlands
  3. 3.Theory Group, NikhefAmsterdamThe Netherlands

Personalised recommendations