Advertisement

QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC

  • Fabrizio Caola
  • Matthew Dowling
  • Kirill Melnikov
  • Raoul RöntschEmail author
  • Lorenzo Tancredi
Open Access
Regular Article - Theoretical Physics

Abstract

We compute next-to-leading order (NLO) QCD corrections to the production of two massive electroweak bosons in gluon fusion. We consider both the prompt production process ggV V and the production mediated by an exchange of an s-channel Higgs boson, ggH V V . We include final states with both on- and off-shell vector bosons with leptonic decays. The gluonic production of vector bosons is a loop-induced process, including both massless and massive quarks in the loop. For ggZZ production, we obtain the NLO QCD corrections to the massive loops through an expansion around the heavy top limit. This approximation is valid below the top production threshold, giving a broad range of invariant masses between the Higgs production and the top production thresholds in which our results are valid. We explore the NLO QCD effects in ggZZ focusing, in particular, on the interference between prompt and Higgs-mediated processes. We find that the QCD corrections to the interference are large and similar in size to the corrections to both the signal and the background processes. At the same time, we observe that corrections to the interference change rapidly with the four-lepton invariant mass in the region around the ZZ production threshold. We also study the interference effects in ggW + W production where, due to technical limitations, we only consider contributions of massless loops. We find that the QCD corrections to the interference in this case are somewhat larger than those for either the signal or the background.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: Complementary results from HW W , Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 064 [arXiv:1405.3455] [INSPIRE].
  8. [8]
    ATLAS collaboration, Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and W W final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 335 [arXiv:1503.01060] [INSPIRE].
  9. [9]
    CMS collaboration, Limits on the Higgs boson lifetime and width from its decay to four charged leptons, Phys. Rev. D 92 (2015) 072010 [arXiv:1507.06656] [INSPIRE].
  10. [10]
    CMS collaboration, Properties of the observed Higgs-like resonance using the diphoton channel, CMS-PAS-HIG-13-016 (2013) [INSPIRE].
  11. [11]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Englert, Y. Soreq and M. Spannowsky, Off-Shell Higgs Coupling Measurements in BSM scenarios, JHEP 05 (2015) 145 [arXiv:1410.5440] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H.E. Logan, Hiding a Higgs width enhancement from off-shell gg(→ h ) → ZZ measurements, Phys. Rev. D 92 (2015) 075038 [arXiv:1412.7577] [INSPIRE].ADSGoogle Scholar
  14. [14]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs Boson Candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, arXiv:1604.08576 [INSPIRE].
  23. [23]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, arXiv:1605.02716 [INSPIRE].
  24. [24]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference effects for ggHW + W beyond leading order, Phys. Rev. D 88 (2013) 034032 [arXiv:1304.3053] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.S. Li, H.T. Li, D.Y. Shao and J. Wang, Soft gluon resummation in the signal-background interference process of gg(→ h ) → ZZ, JHEP 08 (2015) 065 [arXiv:1504.02388] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  29. [29]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  30. [30]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  31. [31]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [arXiv:1604.06447] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top quark approximation, Phys. Lett. B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E.W.N. Glover and J.J. van der Bij, Z-boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Matsuura and J.J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
  37. [37]
    C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
  38. [38]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to \ell \overline{\ell}{\ell}^{\prime }{\overline{\ell}}^{\prime } \), in proceedings of the 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, England, April 7-11 2008, p. 142 [arXiv:0807.0024] [INSPIRE] and online pdf version at https://inspirehep.net/record/789541/files/arXiv:0807.0024.pdf.
  39. [39]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ + τ : A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    U. Baur, E.W.N. Glover and J.J. van der Bij, Hadronic Production of Electroweak Vector Boson Pairs at Large Transverse Momentum, Nucl. Phys. B 318 (1989) 106 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  46. [46]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Hagiwara, T. Kuruma and Y. Yamada, Three jet distributions from the one loop Zgg vertex at e + e colliders, Nucl. Phys. B 358 (1991) 80 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for W W + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.J. van der Bij and E.W.N. Glover, Z Boson Production and Decay via Gluons, Nucl. Phys. B 313 (1989) 237 [INSPIRE].ADSGoogle Scholar
  50. [50]
    V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    J.M. Campbell, R.K. Ellis, E. Furlan and R. Röntsch, Interference effects for Higgs boson mediated Z-pair plus jet production, Phys. Rev. D 90 (2014) 093008 [arXiv:1409.1897] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  54. [54]
    J.M. Campbell, R.K. Ellis and C. Williams, Gluon-Gluon Contributions to W + W Production and Higgs Interference Effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    N. Kauer, Inadequacy of zero-width approximation for a light Higgs boson signal, Mod. Phys. Lett. A 28 (2013) 1330015 [arXiv:1305.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two Loop Correction to Interference in ggZZ, arXiv:1605.01380 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Fabrizio Caola
    • 1
  • Matthew Dowling
    • 2
  • Kirill Melnikov
    • 2
  • Raoul Röntsch
    • 2
    Email author
  • Lorenzo Tancredi
    • 2
  1. 1.CERN Theory DivisionGeneva 23Switzerland
  2. 2.Institute for Theoretical Particle Physics, KITKarlsruheGermany

Personalised recommendations