Advertisement

Z , Higgses and heavy neutrinos in U(1) models: from the LHC to the GUT scale

  • Elena Accomando
  • Claudio Corianò
  • Luigi Delle RoseEmail author
  • Juri Fiaschi
  • Carlo Marzo
  • Stefano Moretti
Open Access
Regular Article - Theoretical Physics

Abstract

We study a class of non-exotic minimal U(1) extensions of the Standard Model, which includes all scenarios that are anomaly-free with the ordinary fermion content augmented by one Right-Handed neutrino per generation, wherein the new Abelian gauge group is spontaneously broken by the non-zero Vacuum Expectation Value of an additional Higgs singlet field, in turn providing mass to a Z state. By adopting the BL example, whose results can be recast into those pertaining to the whole aforementioned class, and allowing for both scalar and gauge mixing, we first extract the surviving parameter space in presence of up-to-date theoretical and experimental constraints. Over the corresponding parameter configurations, we then delineate the high energy behaviour of such constructs in terms of their stability and perturbativity. Finally, we highlight key production and decay channels of the new states entering the spectra of this class of models, i.e., heavy neutrinos, a second Higgs state and the Z , which are amenable to experimental investigation at the Large Hadron Collider. We therefore set the stage to establish a direct link between measurements obtainable at the Electro-Weak scale and the dynamics of the underlying model up to those where a Grand Unification Theory embedding a U(1) can be realised.

Keywords

Beyond Standard Model GUT Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.E. Faraggi and D.V. Nanopoulos, A superstring Z at O(1 T eV )?, Mod. Phys. Lett. A 6 (1991) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.E. Faraggi and M. Guzzi, Extra Z s and W s in heterotic-string derived models, Eur. Phys. J. C 75 (2015) 537 [arXiv:1507.07406] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.E. Faraggi and J. Rizos, The 750 GeV di-photon LHC excess and extra Z s in heterotic-string derived models, Eur. Phys. J. C 76 (2016) 170 [arXiv:1601.03604] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  7. [7]
    T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
  8. [8]
    P.H. Chankowski, S. Pokorski and J. Wagner, Z-prime and the Appelquist-Carrazzone decoupling, Eur. Phys. J. C 47 (2006) 187 [hep-ph/0601097] [INSPIRE].
  9. [9]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved Constraints on Z-prime Bosons from Electroweak Precision Data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z-prime models: Present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Martínez, F. Ochoa and J.P. Rubio, Some phenomenological aspects of a new U(1)′ model, Phys. Rev. D 89 (2014) 056008 [arXiv:1303.2734] [INSPIRE].
  13. [13]
    R. Martínez, J. Nisperuza, F. Ochoa and J.P. Rubio, Scalar dark matter with CERN-LEP data and Z search at the LHC in an U(1) model, Phys. Rev. D 90 (2014) 095004 [arXiv:1408.5153] [INSPIRE].
  14. [14]
    R. Martínez, J. Nisperuza, F. Ochoa, J.P. Rubio and C.F. Sierra, Scalar coupling limits and diphoton Higgs decay from LHC in an U(1) model with scalar dark matter, Phys. Rev. D 92 (2015) 035016 [arXiv:1411.1641] [INSPIRE].
  15. [15]
    R. Martínez and F. Ochoa, Spin-independent interferences and spin-dependent interactions with scalar dark matter, JHEP 05 (2016) 113 [arXiv:1512.04128] [INSPIRE].
  16. [16]
    S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Basso, S. Moretti and G.M. Pruna, Constraining the g 1 coupling in the minimal BL Model, J. Phys. G 39 (2012) 025004 [arXiv:1009.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z discovery potential at the LHC in the minimal BL extension of the Standard Model, Eur. Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L. Basso, S. Moretti and G.M. Pruna, Phenomenology of the minimal BL extension of the Standard Model: the Higgs sector, Phys. Rev. D 83 (2011) 055014 [arXiv:1011.2612] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Basso, S. Moretti and G.M. Pruna, A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic minimal Z bosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Basso, K. Mimasu and S. Moretti, Z signals in polarised top-antitop final states, JHEP 09 (2012) 024 [arXiv:1203.2542] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L. Basso, K. Mimasu and S. Moretti, Non-exotic Z signals in ℓ + , \( b\overline{b} \) and \( t\overline{t} \) final states at the LHC, JHEP 11 (2012) 060 [arXiv:1208.0019] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, Z at the LHC: Interference and Finite Width Effects in Drell-Yan, JHEP 10 (2013) 153 [arXiv:1304.6700] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, Forward-backward asymmetry as a discovery tool for Z bosons at the LHC, JHEP 01 (2016) 127 [arXiv:1503.02672] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, A F B as a discovery tool for Z bosons at the LHC, Nuovo Cim. C 38 (2016) 153 [arXiv:1504.03168] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Okada and S. Okada, Z BL portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Z. Kang, P. Ko and J. Li, New Avenues to Heavy Right-handed Neutrinos with Pair Production at Hadronic Colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Basso, Minimal Zmodels and the 125 GeV Higgs boson, Phys. Lett. B 725 (2013) 322 [arXiv:1303.1084] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Datta, A. Elsayed, S. Khalil and A. Moursy, Higgs vacuum stability in the BL extended standard model, Phys. Rev. D 88 (2013) 053011 [arXiv:1308.0816] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Chakrabortty, P. Konar and T. Mondal, Constraining a class of BL extended models from vacuum stability and perturbativity, Phys. Rev. D 89 (2014) 056014 [arXiv:1308.1291] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Corianò, L. Delle Rose and C. Marzo, Vacuum Stability in U(1)-Prime Extensions of the Standard Model with TeV Scale Right Handed Neutrinos, Phys. Lett. B 738 (2014) 13 [arXiv:1407.8539] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Di Chiara, V. Keus and O. Lebedev, Stabilizing the Higgs potential with a Z , Phys. Lett. B 744 (2015) 59 [arXiv:1412.7036] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1) extended standard model and Higgs vacuum stability, Phys. Rev. D 92 (2015) 015026 [arXiv:1504.06291] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Das, N. Okada and N. Papapietro, Electroweak vacuum stability in classically conformal BL extension of the Standard Model, arXiv:1509.01466[INSPIRE].
  38. [38]
    C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)BL, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Das, S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1) extended standard model, electroweak vacuum stability and LHC Run-2 bounds, Phys. Rev. D 93 (2016) 115038 [arXiv:1605.01157] [INSPIRE].Google Scholar
  40. [40]
    F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    I. Masina, Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The Minimal Set of Electroweak Precision Parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
  46. [46]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  48. [48]
    P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].
  49. [49]
    P. Bechtle et al., HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].
  51. [51]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014)2711 [arXiv:1305.1933] [INSPIRE].
  52. [52]
    CMS collaboration, Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  53. [53]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002.
  54. [54]
    CMS collaboration, Update on the search for the standard model Higgs boson in pp collisions at the LHC decaying to W + W in the fully leptonic final state, CMS-PAS-HIG-13-003.
  55. [55]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.
  56. [56]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].
  57. [57]
    ATLAS, CDF, CMS, D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  58. [58]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Juste et al., Determination of the top quark mass circa 2013: methods, subtleties, perspectives, Eur. Phys. J. C 74 (2014) 3119 [arXiv:1310.0799] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Frixione and A. Mitov, Determination of the top quark mass from leptonic observables, JHEP 09 (2014) 012 [arXiv:1407.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  62. [62]
    M. Bondarenko et al., High Energy Physics Model Database: Towards decoding of the underlying theory, in Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].
  63. [63]
    W. Emam and S. Khalil, Higgs and Z-prime phenomenology in B-L extension of the standard model at LHC, Eur. Phys. J. C 52 (2007) 625 [arXiv:0704.1395] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Khalil and S. Moretti, The BL Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider, arXiv:1503.08162 [INSPIRE].
  66. [66]
    LHC Higgs Cross section Working Group collaboration, SM Higgs production cross sections at \( \sqrt{s}=13 \) TeV, (update in CERN Report4 2016), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV.

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Elena Accomando
    • 1
  • Claudio Corianò
    • 2
    • 3
  • Luigi Delle Rose
    • 1
    Email author
  • Juri Fiaschi
    • 1
  • Carlo Marzo
    • 3
  • Stefano Moretti
    • 1
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.STAG Research Centre and Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  3. 3.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del Salento and INFN-LecceLecceItaly

Personalised recommendations