Advertisement

The upper bound of radiation energy in the Myers-Perry black hole collision

  • Bogeun GwakEmail author
  • Bum-Hoon Lee
Open Access
Regular Article - Theoretical Physics

Abstract

We have investigated the upper bound of the radiation energy in the head-on collision of two Myers-Perry black holes. Initially, the two black holes are far away from each other, and they become one black hole after the collision. We have obtained the upper bound of the radiation energy thermodynamically allowed in the process. The upper bound of the radiation energy is obtained in general dimensions. The radiation bound depends on the alignments of rotating axes for a given initial condition due to spin-spin interaction. We have found that the collision may not be occurred for a initially ultra-spinning black hole.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  2. [2]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
  3. [3]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
  4. [4]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  5. [5]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].
  6. [6]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    P. Burda, R. Gregory and I. Moss, Gravity and the stability of the Higgs vacuum, Phys. Rev. Lett. 115 (2015) 071303 [arXiv:1501.04937] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Burda, R. Gregory and I. Moss, Vacuum metastability with black holes, JHEP 08 (2015) 114 [arXiv:1503.07331] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Penrose, Gravitational collapse: The role of general relativity, Riv. Nuovo Cim. 1 (1969) 252 [Gen. Rel. Grav. 34 (2002) 1141] [INSPIRE].
  10. [10]
    R.M. Wald, Gedanken experiments to destroy a black hole, Annals Phys. 82 (1974) 548.ADSCrossRefGoogle Scholar
  11. [11]
    T. Jacobson and T.P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett. 103 (2009) 141101 [Erratum ibid. 103 (2009) 209903] [arXiv:0907.4146] [INSPIRE].
  12. [12]
    E. Barausse, V. Cardoso and G. Khanna, Test bodies and naked singularities: Is the self-force the cosmic censor?, Phys. Rev. Lett. 105 (2010) 261102 [arXiv:1008.5159] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Barausse, V. Cardoso and G. Khanna, Testing the Cosmic Censorship Conjecture with point particles: the effect of radiation reaction and the self-force, Phys. Rev. D 84 (2011) 104006 [arXiv:1106.1692] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Colleoni and L. Barack, Overspinning a Kerr black hole: the effect of self-force, Phys. Rev. D 91 (2015) 104024 [arXiv:1501.07330] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    M. Colleoni, L. Barack, A.G. Shah and M. van de Meent, Self-force as a cosmic censor in the Kerr overspinning problem, Phys. Rev. D 92 (2015) 084044 [arXiv:1508.04031] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    V. Cardoso and L. Queimada, Cosmic Censorship and parametrized spinning black-hole geometries, Gen. Rel. Grav. 47 (2015) 150 [arXiv:1511.00690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    V.E. Hubeny, Overcharging a black hole and cosmic censorship, Phys. Rev. D 59 (1999) 064013 [gr-qc/9808043] [INSPIRE].
  18. [18]
    S. Isoyama, N. Sago and T. Tanaka, Cosmic censorship in overcharging a Reissner-Nordström black hole via charged particle absorption, Phys. Rev. D 84 (2011) 124024 [arXiv:1108.6207] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Bouhmadi-Lopez, V. Cardoso, A. Nerozzi and J.V. Rocha, Black holes die hard: can one spin-up a black hole past extremality?, Phys. Rev. D 81 (2010) 084051 [arXiv:1003.4295] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Doukas, Exact constraints on D ≤ 10 Myers Perry black holes and the Wald Problem, Phys. Rev. D 84 (2011) 064046 [arXiv:1009.6118] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Saa and R. Santarelli, Destroying a near-extremal Kerr-Newman black hole, Phys. Rev. D 84 (2011) 027501 [arXiv:1105.3950] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Gao and Y. Zhang, Destroying extremal Kerr-Newman black holes with test particles, Phys. Rev. D 87 (2013) 044028 [arXiv:1211.2631] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.V. Rocha, R. Santarelli and T. Delsate, Collapsing rotating shells in Myers-Perry-AdS 5 spacetime: A perturbative approach, Phys. Rev. D 89 (2014) 104006 [arXiv:1402.4161] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.V. Rocha and R. Santarelli, Flowing along the edge: spinning up black holes in AdS spacetimes with test particles, Phys. Rev. D 89 (2014) 064065 [arXiv:1402.4840] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. McInnes and Y.C. Ong, A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes, JCAP 11 (2015) 004 [arXiv:1506.01248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime, Phys. Rev. D 83 (2011) 104037 [arXiv:1102.4352] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Gwak and B.-H. Lee, Cosmic Censorship of Rotating Anti-de Sitter Black Hole, JCAP 02 (2016) 015 [arXiv:1509.06691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    B. Gwak and B.-H. Lee, Thermodynamics of Three-dimensional Black Holes via Charged Particle Absorption, Phys. Lett. B 755 (2016) 324 [arXiv:1510.08215] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Natario, L. Queimada and R. Vicente, Test fields cannot destroy extremal black holes, arXiv:1601.06809 [INSPIRE].
  31. [31]
    L. Lehner and F. Pretorius, Black Strings, Low Viscosity Fluids and Violation of Cosmic Censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P. Figueras, M. Kunesch and S. Tunyasuvunakool, End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  34. [34]
    S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    J.M. Bardeen, Kerr Metric Black Holes, Nature 226 (1970) 64 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Penrose and R.M. Floyd, Extraction of rotational energy from a black hole, Nature 229 (1971) 177 [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Christodoulou, Reversible and irreversible transforations in black hole physics, Phys. Rev. Lett. 25 (1970) 1596 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Christodoulou and R. Ruffini, Reversible transformations of a charged black hole, Phys. Rev. D 4 (1971) 3552 [INSPIRE].ADSGoogle Scholar
  39. [39]
    L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett. 30 (1973) 71 [Erratum ibid. 30 (1973) 521] [INSPIRE].
  40. [40]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].ADSGoogle Scholar
  42. [42]
    B. Gwak and B.-H. Lee, Rotating Black Hole Thermodynamics with a Particle Probe, Phys. Rev. D 84 (2011) 084049 [arXiv:1106.1483] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev. D 81 (2010) 021501 [arXiv:0912.3606] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Ó.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav. 31 (2014) 245011 [arXiv:1402.7047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Ó.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Ó.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall and J.E. Santos, An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    Ó.J.C. Dias, P. Figueras, R. Monteiro and J.E. Santos, Ultraspinning instability of rotating black holes, Phys. Rev. D 82 (2010) 104025 [arXiv:1006.1904] [INSPIRE].ADSzbMATHGoogle Scholar
  48. [48]
    M. Durkee and H.S. Reall, Perturbations of higher-dimensional spacetimes, Class. Quant. Grav. 28 (2011) 035011 [arXiv:1009.0015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    K. Murata, Instability of higher dimensional extreme black holes, Class. Quant. Grav. 30 (2013) 075002 [arXiv:1211.6903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    B. Gwak and B.-H. Lee, Instability of rotating anti-de Sitter black holes, Phys. Rev. D 91 (2015) 064020 [arXiv:1405.2803] [INSPIRE].ADSGoogle Scholar
  52. [52]
    B. Gwak, B.-H. Lee and D. Ro, Instability of Charged Anti-de Sitter Black Holes, arXiv:1509.03493 [INSPIRE].
  53. [53]
    W.-K. Ahn, B. Gwak, B.-H. Lee and W. Lee, Instability of Black Holes with a Gauss-Bonnet Term, Eur. Phys. J. C 75 (2015) 372 [arXiv:1412.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.I. Schiff, Motion of a Gyroscope According to Einstein’s Theory of Gravitation, Proc. Nat. Acad. Sci. 46 (1960) 871 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    B. Mashhoon, Particles with spin in a gravitational field, J. Math. Phys. 12 (1971) 1075 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D.C. Wilkins, General equation for the precession of a gyroscope, Ann. Phys. 61 (1970) 277.ADSCrossRefGoogle Scholar
  58. [58]
    R.M. Wald, Gravitational spin interaction, Phys. Rev. D 6 (1972) 406 [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Majar and B. Mikoczi, Second order spin effects in the spin precession of compact binaries, Phys. Rev. D 86 (2012) 064028 [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Zilhão, V. Cardoso, C. Herdeiro, L. Lehner and U. Sperhake, Collisions of oppositely charged black holes, Phys. Rev. D 89 (2014) 044008 [arXiv:1311.6483] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C.A.R. Herdeiro, C. Rebelo, M. Zilhão and M.S. Costa, A Double Myers-Perry Black Hole in Five Dimensions, JHEP 07 (2008) 009 [arXiv:0805.1206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    R. Plyatsko and M. Fenyk, Highly relativistic spin-gravity coupling for fermions, Phys. Rev. D 91 (2015) 064033 [arXiv:1503.08415] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    G. d’Ambrosi, S. Satish Kumar, J. van de Vis and J. van Holten, Spinning bodies in curved spacetime, Phys. Rev. D 93 (2016) 044051 [arXiv:1511.05454] [INSPIRE].ADSGoogle Scholar
  64. [64]
    D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].
  65. [65]
    U. Sperhake, V. Cardoso, F. Pretorius, E. Berti and J.A. Gonzalez, The High-energy collision of two black holes, Phys. Rev. Lett. 101 (2008) 161101 [arXiv:0806.1738] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F.S. Coelho, C. Herdeiro and M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Hennig and G. Neugebauer, Collisions of rigidly rotating disks of dust in general relativity, Phys. Rev. D 74 (2006) 064025 [gr-qc/0606031] [INSPIRE].
  68. [68]
    J. Hennig, G. Neugebauer and M. Ansorg, Thermodynamic description of inelastic collisions in general relativity, Astrophys. J. 663 (2007) 450 [gr-qc/0701131] [INSPIRE].
  69. [69]
    L. Smarr, A. Cadez, B.S. DeWitt and K. Eppley, Collision of Two Black Holes: Theoretical Framework, Phys. Rev. D 14 (1976) 2443 [INSPIRE].ADSGoogle Scholar
  70. [70]
    L. Smarr, Gravitational Radiation from Distant Encounters and from Headon Collisions of Black Holes: The Zero Frequency Limit, Phys. Rev. D 15 (1977) 2069 [INSPIRE].ADSGoogle Scholar
  71. [71]
    L. Smarr and J.W. York Jr., Kinematical conditions in the construction of space-time, Phys. Rev. D 17 (1978) 2529 [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    H. Witek et al., Numerical relativity for D dimensional space-times: head-on collisions of black holes and gravitational wave extraction, Phys. Rev. D 82 (2010) 104014 [arXiv:1006.3081] [INSPIRE].ADSGoogle Scholar
  73. [73]
    P. Anninos, D. Hobill, E. Seidel, L. Smarr and W.-M. Suen, The Collision of two black holes, Phys. Rev. Lett. 71 (1993) 2851 [gr-qc/9309016] [INSPIRE].
  74. [74]
    P. Anninos et al., Dynamics of apparent and event horizons, Phys. Rev. Lett. 74 (1995) 630 [gr-qc/9403011] [INSPIRE].
  75. [75]
    P. Anninos and S. Brandt, Headon collision of two unequal mass black holes, Phys. Rev. Lett. 81 (1998) 508 [gr-qc/9806031] [INSPIRE].
  76. [76]
    M. Zilhão et al., Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests, Phys. Rev. D 81 (2010) 084052 [arXiv:1001.2302] [INSPIRE].ADSGoogle Scholar
  77. [77]
    H. Witek, V. Cardoso, L. Gualtieri, C. Herdeiro, U. Sperhake and M. Zilhão, Head-on collisions of unequal mass black holes in D = 5 dimensions, Phys. Rev. D 83 (2011) 044017 [arXiv:1011.0742] [INSPIRE].ADSGoogle Scholar
  78. [78]
    H. Witek et al., Higher dimensional Numerical Relativity: code comparison, Phys. Rev. D 90 (2014) 084014 [arXiv:1406.2703] [INSPIRE].ADSGoogle Scholar
  79. [79]
    C. Reisswig, N.T. Bishop, D. Pollney and B. Szilagyi, Unambiguous determination of gravitational waveforms from binary black hole mergers, Phys. Rev. Lett. 103 (2009) 221101 [arXiv:0907.2637] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    H. Bantilan and P. Romatschke, Simulation of Black Hole Collisions in Asymptotically Anti-de Sitter Spacetimes, Phys. Rev. Lett. 114 (2015) 081601 [arXiv:1410.4799] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    W. Bednarek and P. Banasinski, Non-thermal radiation from collisions of compact objects with intermediate scale jets in active galaxies, Astrophys. J. 807 (2015) 168 [arXiv:1506.01181] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    K. Hirotani and H.-Y. Pu, Energetic Gamma Radiation from Rapidly Rotating Black Holes, Astrophys. J. 818 (2016) 50 [arXiv:1512.05026] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    U. Sperhake, E. Berti, V. Cardoso and F. Pretorius, Gravity-dominated unequal-mass black hole collisions, Phys. Rev. D 93 (2016) 044012 [arXiv:1511.08209] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Quantum SpacetimeSogang UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsSogang UniversitySeoulRepublic of Korea
  3. 3.Asia Pacific Center for Theoretical PhysicsPohangRepublic of Korea
  4. 4.Department of PhysicsPostechPohangRepublic of Korea

Personalised recommendations