Factorization for groomed jet substructure beyond the next-to-leading logarithm

  • Christopher Frye
  • Andrew J. LarkoskiEmail author
  • Matthew D. Schwartz
  • Kai Yan
Open Access
Regular Article - Theoretical Physics


Jet grooming algorithms are widely used in experimental analyses at hadron colliders to remove contaminating radiation from within jets. While the algorithms perform a great service to the experiments, their intricate algorithmic structure and multiple parameters has frustrated precision theoretic understanding. In this paper, we demonstrate that one particular groomer called soft drop actually makes precision jet substructure easier. In particular, we derive a factorization formula for a large class of soft drop jet substructure observables, including jet mass. The essential observation that allows for this factorization is that, without the soft wide-angle radiation groomed by soft drop, all singular contributions are collinear. The simplicity and universality of the collinear limit in QCD allows us to show that to all orders, the normalized differential cross section has no contributions from non-global logarithms. It is also independent of process, up to the relative fraction of quark and gluon jets. In fact, soft drop allows us to define this fraction precisely. The factorization theorem also explains why soft drop observables are less sensitive to hadronization than their ungroomed counterparts. Using the factorization theorem, we resum the soft drop jet mass to next-to-next-to-leading logarithmic accuracy. This requires calculating some clustering effects that are closely related to corresponding effects found in jet veto calculations. We match our resummed calculation to fixed order results for both e + e → dijets and ppZ + j events, producing the first jet substructure predictions (groomed or ungroomed) to this accuracy for the LHC.


Jets NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet cleansing: pileup removal at high luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, JHEP 08 (2015) 079 [arXiv:1503.01088] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  15. [15]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  16. [16]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  17. [17]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  18. [18]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  19. [19]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  20. [20]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  21. [21]
    M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of double-differential cross sections and fully-unintegrated parton distribution functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.J. Larkoski, I. Moult and D. Neill, Non-global logarithms, factorization and the soft substructure of jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective field theory for jet processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The complete two-loop integrated jet thrust distribution in soft-collinear effective theory, JHEP 03 (2014) 139 [arXiv:1309.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL’+NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  36. [36]
    G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in soft-collinear effective theory, in Proceedings, 12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders), (2015) [arXiv:1512.06100] [INSPIRE].
  37. [37]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
  38. [38]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass at hadron colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision jet substructure from boosted event shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
  48. [48]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  49. [49]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg Germany (1998)-(1999) [hep-ph/9907280] [INSPIRE].
  50. [50]
    M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s}=300 \) GeV, Ph.D. thesis, Tech. Hochsch., Aachen Germany (2000).
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].
  53. [53]
    M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  55. [55]
    T. Becher, A. Broggio and A. Ferroglia, Introduction to soft-collinear effective theory, Lect. Notes Phys. 896 (2015) 1 [arXiv:1410.1892] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    I. Feige and M.D. Schwartz, An on-shell approach to factorization, Phys. Rev. D 88 (2013) 065021 [arXiv:1306.6341] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I. Feige and M.D. Schwartz, Hard-soft-collinear factorization to all orders, Phys. Rev. D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].ADSGoogle Scholar
  58. [58]
    I. Feige, M.D. Schwartz and K. Yan, Removing phase-space restrictions in factorized cross sections, Phys. Rev. D 91 (2015) 094027 [arXiv:1502.05411] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global structure of the O(α s2) dijet soft function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    A. Hornig, C. Lee, J.R. Walsh and S. Zuberi, Double non-global logarithms in-n-out of jets, JHEP 01 (2012) 149 [arXiv:1110.0004] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].ADSGoogle Scholar
  63. [63]
    K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite N c beyond leading order, JHEP 03 (2015) 094 [arXiv:1501.00475] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, arXiv:1501.03754 [INSPIRE].
  65. [65]
    D. Neill, The edge of jets and subleading non-global logs, arXiv:1508.07568 [INSPIRE].
  66. [66]
    L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146] [INSPIRE].
  69. [69]
    C.F. Berger, Higher orders in A(α s)/[1 − x]+ of nonsinglet partonic splitting functions, Phys. Rev. D 66 (2002) 116002 [hep-ph/0209107] [INSPIRE].
  70. [70]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  71. [71]
    O.V. Tarasov, A.A. Vladimirov and A. Yu. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].
  73. [73]
    W.L. van Neerven, Dimensional regularization of mass and infrared singularities in two loop on-shell vertex functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    C.W. Bauer and A.V. Manohar, Shape function effects in BX s γ and \( B\to {X}_u\ell \overline{\nu} \) decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [INSPIRE].
  76. [76]
    S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].
  77. [77]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
  79. [79]
    M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].
  80. [80]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  81. [81]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].
  82. [82]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
  85. [85]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  86. [86]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  87. [87]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  88. [88]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  89. [89]
    L. Hartgring, E. Laenen and P. Skands, Antenna showers with one-loop matrix elements, JHEP 10 (2013) 127 [arXiv:1303.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A.J. Larkoski, J.J. Lopez-Villarejo and P. Skands, Helicity-dependent showers and matching with VINCIA, Phys. Rev. D 87 (2013) 054033 [arXiv:1301.0933] [INSPIRE].ADSGoogle Scholar
  91. [91]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, Specific features of heavy quark production. LPHD approach to heavy particle spectra, Phys. Rev. D 53 (1996) 89 [hep-ph/9506425] [INSPIRE].
  93. [93]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
  95. [95]
    G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].
  96. [96]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Dissecting soft radiation with factorization, Phys. Rev. Lett. 114 (2015) 092001 [arXiv:1405.6722] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL+NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    D. Farhi, I. Feige, M. Freytsis and M.D. Schwartz, Streamlining resummed QCD calculations using Monte Carlo integration, arXiv:1507.06315 [INSPIRE].
  99. [99]
    A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
  100. [100]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].
  101. [101]
    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z+2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].
  102. [102]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    Fastjet contrib webpage,
  104. [104]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    I.Z. Rothstein and I.W. Stewart, An effective field theory for forward scattering and factorization violation, arXiv:1601.04695 [INSPIRE].
  106. [106]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  108. [108]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, EERAD3: event shapes and jet rates in electron-positron annihilation at order α s3, Comput. Phys. Commun. 185 (2014) 3331 [arXiv:1402.4140] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].
  111. [111]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].
  112. [112]
    R.V. Harlander, Virtual corrections to ggH to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].
  113. [113]
    C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].
  114. [114]
    V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].
  115. [115]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Christopher Frye
    • 1
  • Andrew J. Larkoski
    • 1
    Email author
  • Matthew D. Schwartz
    • 1
  • Kai Yan
    • 1
  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations