Tunneling into microstate geometries: quantum effects stop gravitational collapse

  • Iosif Bena
  • Daniel R. MayersonEmail author
  • Andrea Puhm
  • Bert Vercnocke
Open Access
Regular Article - Theoretical Physics


Collapsing shells form horizons, and when the curvature is small classical general relativity is believed to describe this process arbitrarily well. On the other hand, quantum information theory based (fuzzball/firewall) arguments suggest the existence of some structure at the black hole horizon. This structure can only form if classical general relativity stops being the correct description of the collapsing shell before it reaches the horizon size. We present strong evidence that classical general relativity can indeed break down prematurely, by explicitly computing the quantum tunneling amplitude of a collapsing shell of branes into smooth horizonless microstate geometries. We show that the amplitude for tunneling into microstate geometries with a large number of topologically non-trivial cycles is parametrically larger than e S BH , which indicates that the shell can tunnel into a horizonless configuration long before the horizon has any chance to form. We also use this technology to investigate the tunneling of M2 branes into LLM bubbling geometries.


Black Holes in String Theory Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56 (1939) 455 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [INSPIRE].
  10. [10]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, in 5th Modave Summer School in Mathematical Physics, August 17-21, Modave, Belgium (2010), arXiv:1001.1444 [INSPIRE].
  11. [11]
    I. Bena and N.P. Warner, Resolving the structure of black holes: philosophizing with a hammer, arXiv:1311.4538 [INSPIRE].
  12. [12]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An Infinite-Dimensional Family of Black-Hole Microstate Geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  16. [16]
    I. Bena et al., Habemus superstratum! A constructive proof of the existence of superstrata, arXiv:1503.01463.
  17. [17]
    I. Bena, M. Shigemori and N.P. Warner, Black-Hole Entropy from Supergravity Superstrata States, JHEP 10 (2014) 140 [arXiv:1406.4506] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    R. Serini, Euclideitá dello spazio completamente vuoto nella relativitá general di Einstein, Atti Acad. Lincei Ser. 5 Rend. 27 (1918) 235.Google Scholar
  19. [19]
    A. Einstein, Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities, Univ. Nac. Tucumn. Rev. A 2 (1941) 5.MathSciNetzbMATHGoogle Scholar
  20. [20]
    A. Einstein and W. Pauli, On the non-existence of regular stationary solutions of relativistic field equations, Ann. Math. 44 (1943) 131.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    B. Carter, Tensor and vector multiplets in six-dimensional supergravity, in Gravitation in Astrophysics: Cargese 1986, B. Carter and J. Hartle eds., Nato ASI series B volume 156, Plenum Press (1986).Google Scholar
  23. [23]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    H.K. Kunduri and J. Lucietti, The first law of soliton and black hole mechanics in five dimensions, Class. Quant. Grav. 31 (2014) 032001 [arXiv:1310.4810] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    P.A. Haas, Smarr’s formula in eleven-dimensional supergravity, arXiv:1405.3708 [INSPIRE].
  26. [26]
    P. de Lange, D.R. Mayerson and B. Vercnocke, Structure of six-dimensional microstate geometries, JHEP 09 (2015) 075 [arXiv:1504.00798].MathSciNetCrossRefGoogle Scholar
  27. [27]
    S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    S.D. Mathur, How fast can a black hole release its information?, Int. J. Mod. Phys. D 18 (2009) 2215 [arXiv:0905.4483] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    P. Kraus and S.D. Mathur, Nature abhors a horizon, arXiv:1505.05078.
  30. [30]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χ SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    I.R. Klebanov and S.S. Pufu, M-branes and metastable states, JHEP 08 (2011) 035 [arXiv:1006.3587] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Ricci flat metrics, harmonic forms and brane resolutions, Commun. Math. Phys. 232 (2003) 457 [hep-th/0012011] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  35. [35]
    I. Bena, A. Puhm and B. Vercnocke, Metastable supertubes and non-extremal black hole microstates, JHEP 04 (2012) 100 [arXiv:1109.5180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    I. Bena, A. Puhm and B. Vercnocke, Non-extremal black hole microstates: fuzzballs of fire or fuzzballs of fuzz?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S. Massai, G. Pasini and A. Puhm, Metastability in bubbling AdS space, JHEP 02 (2015) 138 [arXiv:1407.6007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    I. Bena, The M-theory dual of a three-dimensional theory with reduced supersymmetry, Phys. Rev. D 62 (2000) 126006 [hep-th/0004142] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M 2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    S. Cheon, H.-C. Kim and S. Kim, Holography of mass-deformed M 2-branes, arXiv:1101.1101 [INSPIRE].
  42. [42]
    I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, double supertube bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS solutions and pure-Higgs states, JHEP 11 (2012) 171 [arXiv:1205.5023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    E.J. Martinec and B.E. Niehoff, Hair-brane ideas on the horizon, JHEP 11 (2015) 195 [arXiv:1509.00044].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Banks, C.M. Bender and T.T. Wu, Coupled anharmonic oscillators. 1. Equal mass case, Phys. Rev. D 8 (1973) 3346 [INSPIRE].
  49. [49]
    S.R. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of euclidean scalar field equations, Commun. Math. Phys. 58 (1978) 211 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    M. Billó, S. Cacciatori, F. Denef, P. Fré, A. Van Proeyen and D. Zanon, The 0-brane action in a general D = 4 supergravity background, Class. Quant. Grav. 16 (1999) 2335 [hep-th/9902100] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in bubbling backgrounds: Born-Infeld meets supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    M.C.N. Cheng, More bubbling solutions, JHEP 03 (2007) 070 [hep-th/0611156] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    B.D. Chowdhury and D.R. Mayerson, Multi-centered D1-D5 solutions at finite B-moduli, JHEP 02 (2014) 043 [arXiv:1305.0831] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Giusto and R. Russo, Perturbative superstrata, Nucl. Phys. B 869 (2013) 164 [arXiv:1211.1957] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    D. Mateos, S. Ng and P.K. Townsend, Tachyons, supertubes and brane/anti-brane systems, JHEP 03 (2002) 016 [hep-th/0112054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity: ‘Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Silverstein, Backdraft: string creation in an old Schwarzschild black hole, arXiv:1402.1486 [INSPIRE].
  67. [67]
    I. Bena and N.P. Warner, A harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    K. Hanaki and H. Lin, M 2-M 5 systems in N = 6 Chern-Simons theory, JHEP 09 (2008) 067 [arXiv:0807.2074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3D dualities from 4D dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12(2000) 019 [hep-th/0009234] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  73. [73]
    I. Bena and N.P. Warner, One ring to rule them all. . . and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    V.S. Rychkov, D1-D5 black hole microstate counting from supergravity, JHEP 01 (2006) 063 [hep-th/0512053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    C. Krishnan and A. Raju, A note on D1-D5 entropy and geometric quantization, JHEP 06 (2015) 054 [arXiv:1504.04330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Iosif Bena
    • 1
  • Daniel R. Mayerson
    • 2
    • 3
    Email author
  • Andrea Puhm
    • 4
  • Bert Vercnocke
    • 2
  1. 1.Institut de Physique ThéoriqueUniversité Paris SaclayGif-sur-YvetteFrance
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Physics and Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.
  4. 4.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations