Exact results for \( \mathcal{N} \) = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants

  • Mikhail Bershtein
  • Giulio Bonelli
  • Massimiliano Ronzani
  • Alessandro Tanzini
Open Access
Regular Article - Theoretical Physics

Abstract

We provide a contour integral formula for the exact partition function of \( \mathcal{N} \) = 2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) \( \mathcal{N} \) = 2 theory on \( {\mathrm{\mathbb{P}}}^2 \) for all instanton numbers. In the zero mass case, corresponding to the \( \mathcal{N} \) = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new.

Keywords

Extended Supersymmetry Supersymmetric gauge theory Differential and Algebraic Geometry Topological Field Theories 

References

  1. [1]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  5. [5]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    N. Nekrasov, Non-Perturbative Schwinger-Dyson Equations: From BPS/CFT Correcpondence to the Novel Symmetries of Quantum Field Theory, talk at Pomeranchuk-100, Moscow Russia (2013), http://www.itep.ru/rus/docs/09 Nekrasov.pdf.
  7. [7]
    A. Okounkov, Math. Coll. at Simons Center of Geometry and Physics, http://media.scgp.stonybrook.edu/video/video.php?f=20130124 4 qtp.mp4.
  8. [8]
    N. Nekrasov and A. Okounkov, Quantum cohomology and quantum intermediate long wave equation, in preparation.Google Scholar
  9. [9]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    G. Bonelli, A. Sciarappa, A. Tanzini and P. Vasko, Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) Quantum Intermediate Long Wave Hydrodynamics, JHEP 07 (2014) 141 [arXiv:1403.6454] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Bonelli, A. Sciarappa, A. Tanzini and P. Vasko, Quantum Cohomology and Quantum Hydrodynamics from Supersymmetric Quiver Gauge Theories, arXiv:1505.07116 [INSPIRE].
  12. [12]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    F. Fucito, J.F. Morales and R. Poghossian, Instanton on toric singularities and black hole countings, JHEP 12 (2006) 073 [hep-th/0610154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    U. Bruzzo, R. Poghossian and A. Tanzini, Poincaré polynomial of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces, Commun. Math. Phys. 304 (2011) 395 [arXiv:0909.1458] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    G. Bonelli, K. Maruyoshi, A. Tanzini and F. Yagi, N = 2 gauge theories on toric singularities, blow-up formulae and W-algebrae, JHEP 01 (2013) 014 [arXiv:1208.0790] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.A. Belavin, M.A. Bershtein, B.L. Feigin, A.V. Litvinov and G.M. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Commun. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M.-C. Tan, M-Theoretic Derivations of 4d-2d Dualities: From a Geometric Langlands Duality for Surfaces, to the AGT Correspondence, to Integrable Systems, JHEP 07 (2013) 171 [arXiv:1301.1977] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    U. Bruzzo, M. Pedrini, F. Sala and R.J. Szabo, Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, Adv. Math. 288 (2016) 1175 [arXiv:1312.5554] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    U. Bruzzo, F. Sala and R.J. Szabo, \( \mathcal{N} \) = 2 Quiver Gauge Theories on A-type ALE Spaces, Lett. Math. Phys. 105 (2015) 401 [arXiv:1410.2742] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, \( \mathcal{N} \) = 2 supersymmetric gauge theories on S 2 × S 2 and Liouville Gravity, JHEP 07 (2015) 054 [arXiv:1411.2762] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353.ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    E. Witten, Supersymmetric Yang-Mills theory on a four manifold, J. Math. Phys. 35 (1994) 5101 [hep-th/9403195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    P.B. Kronheimer and T.S. Mrowka, Instanton Floer homology and the Alexander polynomial, arXiv:0907.4639 [INSPIRE].
  27. [27]
    S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    C. Klare and A. Zaffaroni, Extended Supersymmetry on Curved Spaces, JHEP 10 (2013) 218 [arXiv:1308.1102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Bellisai, F. Fucito, A. Tanzini and G. Travaglini, Multi-instantons, supersymmetry and topological field theories, Phys. Lett. B 480 (2000) 365 [hep-th/0002110] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    D. Bellisai, F. Fucito, A. Tanzini and G. Travaglini, Instanton calculus, topological field theories and N = 2 super Yang-Mills theories, JHEP 07 (2000) 017 [hep-th/0003272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
  33. [33]
    D. Rodriguez-Gomez and J. Schmude, Partition functions for equivariantly twisted \( \mathcal{N} \) = 2 gauge theories on toric Kähler manifolds, JHEP 05 (2015) 111 [arXiv:1412.4407] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998) 515.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    L. Gottsche, H. Nakajima and K. Yoshioka, Instanton counting and Donaldson invariants, J. Diff. Geom. 80 (2008) 343 [math/0606180] [INSPIRE].
  36. [36]
    G. Ellingsrud and L. Göttsche, Wall-crossing formulas, Bott residue formula and the Donaldson invariants of rational surfaces, alg-geom/9506019.
  37. [37]
    M. Kool, Euler characteristics of moduli spaces of torsion free sheaves on toric surfaces, Geom. Ded. 176 (2015) 241 arXiv:0906.3393.Google Scholar
  38. [38]
    K. Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank 2 on a ruled surface, J. Reine Angew. Math. 453 (1994) 193.MathSciNetMATHGoogle Scholar
  39. [39]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S.K. Donaldson, Anti-self-dual Yang-Mills connexions over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1) (1985) 1.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Uhlenbeck and S.T. Yau, On the existence of Hermitian Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) 257.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    K. Uhlenbeck and S.T. Yau, A note on our previous paper: On the existence of Hermitian Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 42 (1989) 703.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Knutson and E.R. Sharpe, Sheaves on toric varieties for physics, Adv. Theor. Math. Phys. 2 (1998) 865 [hep-th/9711036] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    L. Baulieu, G. Bossard and A. Tanzini, Topological vector symmetry of BRSTQFT and construction of maximal supersymmetry, JHEP 08 (2005) 037 [hep-th/0504224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    W. Fulton, Introduction to Toric Varieties, Annals of mathematics studies, Princeton University Press, Princeton U.S.A. (1993).CrossRefGoogle Scholar
  47. [47]
    A.A. Klyachko, Moduli of vector bundles and numbers of classes, Funct. Anal. Appl. 25 (1991) 67.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-manifolds, Oxford Mathematical Monographs, Clarendon Press, Oxford U.K. (1997).Google Scholar
  49. [49]
    R. Flume and R. Poghossian, An Algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    A. Zamolodchikov, Conformal Symmetry in two-dimensions: an explicit Recurrence Formula for the Conformal Partial Wave Amplitude, Commun. Math. Phys. 96 (1984) 419.ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    H. Cohen, Graduate Texts in Mathematics. Vol. 138: A course in computational algebraic number theory, Springer-Verlag, Berlin Germany (1993).Google Scholar
  53. [53]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    G. Bonelli, The Geometry of the M5-branes and TQFTs, J. Geom. Phys. 40 (2001) 13 [hep-th/0012075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    B. Haghighat, From strings in 6d to strings in 5d, JHEP 01 (2016) 062 [arXiv:1502.06645] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    J. Manschot, Sheaves on P2 and generalized Appell functions, arXiv:1407.7785 [INSPIRE].
  57. [57]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and Super Liouville Conformal Field Theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge Theories on ALE Space and Super Liouville Correlation Functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d Superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    L. Hadasz and Z. Jaskólski, Super-Liouville-Double-Liouville correspondence, JHEP 05 (2014) 124 [arXiv:1312.4520] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima-Yoshioka blow-up equations, Lett. Math. Phys. 106 (2016) 29 [arXiv:1310.7281] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, arXiv:1210.5909 [INSPIRE].
  67. [67]
    H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index, arXiv:1307.7660 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Mikhail Bershtein
    • 1
    • 2
    • 3
  • Giulio Bonelli
    • 4
  • Massimiliano Ronzani
    • 4
  • Alessandro Tanzini
    • 4
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.National Research University Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, Institute for Information Transmission ProblemsMoscowRussia
  3. 3.Independent University of MoscowMoscowRussia
  4. 4.International School of Advanced Studies (SISSA), and INFN, Sezione di TriesteTriesteItaly

Personalised recommendations