Bi-local holography in the SYK model

Open Access
Regular Article - Theoretical Physics

Abstract

We discuss large N rules of the Sachdev-Ye-Kitaev model and the bi-local representation of holography of this theory. This is done by establishing 1/N Feynman rules in terms of bi-local propagators and vertices, which can be evaluated following the recent procedure of Polchinski and Rosenhaus. These rules can be interpreted as Witten type diagrams of the dual AdS theory, which we are able to define at IR fixed point and off.

Keywords

1/N Expansion AdS-CFT Correspondence Gauge-gravity correspondence 2D Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J.-w. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    A. Georges, O. Parcollet and S. Sachdev, Mean Field Theory of a Quantum Heisenberg Spin Glass, Phys. Rev. Lett. 85 (2000) 840 [cond-mat/9909239].
  3. [3]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    A. Kitaev, A simple model of quantum holography, KITP strings seminar and Entanglement 2015 program, 12 February, 7 April and 27 May 2015, http://online.kitp.ucsb.edu/online/entangled15/.
  6. [6]
    A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at Breakthrough Prize Fundamental Physics Symposium, 10 November 2014, http://online.kitp.ucsb.edu/online/joint98/.
  7. [7]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O’Bannon and J. Wu, Holographic impurities and Kondo effect, Fortsch. Phys. 64 (2016) 322 [arXiv:1511.09362] [INSPIRE].CrossRefMATHGoogle Scholar
  10. [10]
    J. Maldacena, Models for the Vacuum, talk given at Nambu Memorial Symposium, Chicago, U.S.A., 12 March 2016.Google Scholar
  11. [11]
    J. Maldacena and D. Stanford, Comments on the Sachdev-Ye-Kitaev model, arXiv:1604.07818 [INSPIRE].
  12. [12]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, arXiv:1603.05246 [INSPIRE].
  13. [13]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev. D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE].
  20. [20]
    J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].
  21. [21]
    D. Stanford, Many-body chaos at weak coupling, arXiv:1512.07687 [INSPIRE].
  22. [22]
    B. Michel, J. Polchinski, V. Rosenhaus and S.J. Suh, Four-point function in the IOP matrix model, JHEP 05 (2016) 048 [arXiv:1602.06422] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Caputa, T. Numasawa and A. Veliz-Osorio, Scrambling without chaos in RCFT, arXiv:1602.06542 [INSPIRE].
  24. [24]
    Y. Gu and X.-L. Qi, Fractional Statistics and the Butterfly Effect, arXiv:1602.06543 [INSPIRE].
  25. [25]
    E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, arXiv:1602.08272 [INSPIRE].
  26. [26]
    D. Anninos, T. Anous and F. Denef, Disordered Quivers and Cold Horizons, arXiv:1603.00453 [INSPIRE].
  27. [27]
    G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, arXiv:1603.03020 [INSPIRE].
  28. [28]
    S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  29. [29]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  31. [31]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CF T 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Holography as a Gauge Phenomenon in Higher Spin Duality, JHEP 01 (2015) 055 [arXiv:1408.1255] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical Formulation of O(N) Vector/Higher Spin Correspondence, J. Phys. A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  34. [34]
    E. Mintun and J. Polchinski, Higher Spin Holography, RG and the Light Cone, arXiv:1411.3151 [INSPIRE].
  35. [35]
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-Front Holographic QCD and Emerging Confinement, Phys. Rept. 584 (2015) 1 [arXiv:1407.8131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    A. Jevicki and B. Sakita, Collective Field Approach to the Large-N Limit: Euclidean Field Theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. de Mello Koch and J.P. Rodrigues, Systematic 1/N corrections for bosonic and fermionic vector models without auxiliary fields, Phys. Rev. D 54 (1996) 7794 [hep-th/9605079] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Jevicki, K. Jin and J. Yoon, 1/N and loop corrections in higher spin AdS 4 /CF T 3 duality, Phys. Rev. D 89 (2014) 085039 [arXiv:1401.3318] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.-L. Gervais, A. Jevicki and B. Sakita, Collective Coordinate Method for Quantization of Extended Systems, Phys. Rept. 23 (1976) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.W. Moore and N. Seiberg, From loops to fields in 2-D quantum gravity, Int. J. Mod. Phys. A 7 (1992) 2601 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D = 1 Strings, Mod. Phys. Lett. A 5 (1990) 1639 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, arXiv:1606.01857 [INSPIRE].
  45. [45]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An Investigation of AdS2 Backreaction and Holography, arXiv:1606.03438 [INSPIRE].
  46. [46]
    A. Jevicki and J. Yoon, Bulk from Bi-locals in Thermo Field CFT, JHEP 02 (2016) 090 [arXiv:1503.08484] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Jevicki and K. Suzuki, Thermofield Duality for Higher Spin Rindler Gravity, JHEP 02 (2016) 094 [arXiv:1508.07956] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations