Advertisement

On the global symmetries of 6D superconformal field theories

  • Marco Bertolini
  • Peter R. Merkx
  • David R. Morrison
Open Access
Regular Article - Theoretical Physics

Abstract

We study global symmetry groups of six-dimensional superconformal field theories (SCFTs). In the Coulomb branch we use field theoretical arguments to predict an upper bound for the global symmetry of the SCFT. We then analyze global symmetry groups of F-theory constructions of SCFTs with a one-dimensional Coulomb branch. While in the vast majority of cases, all of the global symmetries allowed by our Coulomb branch analysis can be realized in F-theory, in a handful of cases we find that F-theory models fail to realize the full symmetry of the theory on the Coulomb branch. In one particularly mysterious case, F-theory models realize several distinct maximal subgroups of the predicted group, but not the predicted group itself.

Keywords

Differential and Algebraic Geometry F-Theory Global Symmetries Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P.S. Aspinwall, Point-like instantons and the Spin(32)/Z 2 heterotic string, Nucl. Phys. B 496 (1997) 149 [hep-th/9612108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl. Phys. B 496 (1997) 177 [hep-th/9702038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Hanany and A. Zaffaroni, Chiral symmetry from type IIA branes, Nucl. Phys. B 509 (1998) 145 [hep-th/9706047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  16. [16]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  17. [17]
    M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Bershadsky and C. Vafa, Global anomalies and geometric engineering of critical theories in six-dimensions, hep-th/9703167 [INSPIRE].
  19. [19]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Gaiotto and A. Tomasiello, Holography for (1,0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  22. [22]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Geometry of 6D RG flows, JHEP 09 (2015) 052 [arXiv:1505.00009] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    J. de Boer et al., Triples, fluxes and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Tachikawa, Frozen, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265 [hep-th/9703098] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6D N = (1, 0) theories on S 1 /T 2 and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6D conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985, Brunswick ME U.S.A. (1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc. U.S.A. (1987), pg. 345.Google Scholar
  34. [34]
    C. Córdova, Decoupling gravity in F-theory, Adv. Theor. Math. Phys. 15 (2011) 689 [arXiv:0910.2955] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    C. Córdova, T.T. Dumitrescu and K. Intriligator, to appear.Google Scholar
  36. [36]
    K. Kodaira, On compact analytic surfaces. II, Ann. Math. 77 (1963) 563.CrossRefzbMATHGoogle Scholar
  37. [37]
    K. Kodaira, On compact analytic surfaces. III, Ann. Math. 78 (1963) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux (in French), Inst. Hautes Études Sci. Publ. Math. 21 (1964) 5.CrossRefzbMATHGoogle Scholar
  39. [39]
    J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lect. Notes Math. 476 (1975) 33.MathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory, JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories, JHEP 08 (2014) 002 [arXiv:1404.3887] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, Prog. Theor. Exp. Phys. 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Marco Bertolini
    • 1
    • 2
    • 3
  • Peter R. Merkx
    • 4
  • David R. Morrison
    • 4
    • 5
  1. 1.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsU.C. Santa BarbaraSanta BarbaraU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  4. 4.Department of MathematicsU.C. Santa BarbaraSanta BarbaraU.S.A.
  5. 5.Department of PhysicsU.C. Santa BarbaraSanta BarbaraU.S.A.

Personalised recommendations