Skip to main content

Asking for an extra photon in Higgs production at the LHC and beyond

A preprint version of the article is available at arXiv.

Abstract

We study the inclusive production of a Higgs boson in association with a high-p T photon at the LHC, detailing the leading-order features of the main processes contributing to the Hγ final state. Requiring an extra hard photon in Higgs production upsets the cross-section hierarchy for the dominant channels. The Hγ inclusive production comes mainly from photons radiated in vector-boson fusion (VBF), which accounts for about 2/3 of the total rate, for p γ,j T  > 30 GeV, at leading order. On the other hand, radiating a high-p T photon in the main top-loop Higgs channel implies an extra parton in the final state, which suppresses the production rate by a further α S power. As a result, the Hγ production via top loops at the LHC has rates comparable with the ones arising from either the \( Ht\overline{t} \) production or the HW (Z)γ associated production. Then, in order of decreasing cross section, comes the single-top-plus-Higgs channel, followed in turn by the heavy-flavor fusion processes \( b\overline{b}\to H\gamma \) and \( c\overline{c}\to H\gamma \). The Hγ production via electroweak loops has just a minor role. At larger c.m. energies, the \( Ht\overline{t}\gamma \) channel surpasses the total contribution of top-loop processes. In particular, requiring p γ,j T  > 30 GeV at \( \sqrt{S}\simeq 100 \) TeV, \( Ht\overline{t}\gamma \) accounts for about 1/4 of the inclusive Hγ production at leading order, about half of the total being due to VBF production.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, CERN-2011-002 [arXiv:1101.0593] [INSPIRE].

  8. [8]

    S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, CERN-2012-002 [arXiv:1201.3084] [INSPIRE].

  9. [9]

    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 [arXiv:1307.1347] [INSPIRE].

  10. [10]

    P. Agrawal and A. Shivaji, Gluon Fusion Contribution to V Hj Production at Hadron Colliders, Phys. Lett. B 741 (2015) 111 [arXiv:1409.8059] [INSPIRE].

    Article  Google Scholar 

  11. [11]

    E. Gabrielli, F. Maltoni, B. Mele, M. Moretti, F. Piccinini and R. Pittau, Higgs Boson Production in Association with a Photon in Vector Boson Fusion at the LHC, Nucl. Phys. B 781 (2007) 64 [hep-ph/0702119] [INSPIRE].

  12. [12]

    K. Arnold, T. Figy, B. Jager and D. Zeppenfeld, Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC, JHEP 08 (2010) 088 [arXiv:1006.4237] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  13. [13]

    S. Mao et al., Next-to-leading order QCD corrections to HW ± γ production at the LHC, Phys. Rev. D 88 (2013) 076002 [arXiv:1310.0946] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    X. Shou-Jian, M. Wen-Gan, G. Lei, Z. Ren-You, C. Chong and S. Mao, HZγ production at 14 TeV LHC in next-to-leading order QCD, J. Phys. G 42 (2015) 065006 [arXiv:1505.03226] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Abbasabadi, D. Bowser-Chao, D.A. Dicus and W.W. Repko, Higgs-photon associated production at hadron colliders, Phys. Rev. D 58 (1998) 057301 [hep-ph/9706335] [INSPIRE].

  16. [16]

    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

  17. [17]

    CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

  18. [18]

    Future Circular Collider Study Kickoff Meeting, Geneva Switzerland 12-15 February 2014 https://indico.cern.ch/event/282344/.

  19. [19]

    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics Opportunities of a 100 TeV Proton-Proton Collider, arXiv:1511.06495 [INSPIRE].

  20. [20]

    J. Baglio, A. Djouadi and J. Quevillon, Prospects for Higgs physics at energies up to 100 TeV, arXiv:1511.07853 [INSPIRE].

  21. [21]

    A. Andreazza et al., What Next: White Paper of the INFN-CSN1, Frascati Phys. Ser. 60 (2015) 1 [INSPIRE].

    Google Scholar 

  22. [22]

    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

  23. [23]

    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating \( p\overline{p}\to W\pm /Z0+ \) Jets, Nucl. Phys. B 262 (1985) 235 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    P. Torrielli, Rare Standard Model processes for present and future hadronic colliders, arXiv:1407.1623 [INSPIRE].

  28. [28]

    T.M.P. Tait and C.P. Yuan, Single top quark production as a window to physics beyond the standard model, Phys. Rev. D 63 (2000) 014018 [hep-ph/0007298] [INSPIRE].

  29. [29]

    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].

  30. [30]

    V. Barger, M. McCaskey and G. Shaughnessy, Single top and Higgs associated production at the LHC, Phys. Rev. D 81 (2010) 034020 [arXiv:0911.1556] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [arXiv:1304.1822] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    E. Gabrielli, B. Mele and J. Rathsman, Higgs boson plus photon production at the LHC: a clean probe of the b-quark parton densities, Phys. Rev. D 77 (2008) 015007 [arXiv:0707.0797] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    X.-X. Li, C.-X. Yue, J.-X. Chen and J.-N. Dai, Production of a neutral scalar associated with a photon at the LHC in the topcolor-assisted technicolor model, Chin. Phys. C 36 (2012) 485 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys. Rev. D 86 (2012) 055005 [arXiv:1202.6377] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto Pittau.

Additional information

ArXiv ePrint: 1601.03635

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabrielli, E., Mele, B., Piccinini, F. et al. Asking for an extra photon in Higgs production at the LHC and beyond. J. High Energ. Phys. 2016, 3 (2016). https://doi.org/10.1007/JHEP07(2016)003

Download citation

Keywords

  • Higgs Physics
  • Perturbative QCD