Non-Abelian string breaking phenomena with matrix product states

  • Stefan Kühn
  • Erez Zohar
  • J. Ignacio Cirac
  • Mari Carmen Bañuls
Open Access
Regular Article - Theoretical Physics

Abstract

Using matrix product states, we explore numerically the phenomenology of string breaking in a non-Abelian lattice gauge theory, namely 1+1 dimensional SU(2). The technique allows us to study the static potential between external heavy charges, as traditionally explored by Monte Carlo simulations, but also to simulate the real-time dynamics of both static and dynamical fermions, as the latter are fully included in the formalism. We propose a number of observables that are sensitive to the presence or breaking of the flux string, and use them to detect and characterize the phenomenon in each of these setups.

Keywords

Field Theories in Lower Dimensions Lattice Gauge Field Theories 

References

  1. [1]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.S. Bali and K. Schilling, Static quark - anti-quark potential: Scaling behavior and finite size effects in SU(3) lattice gauge theory, Phys. Rev. D 46 (1992) 2636 [INSPIRE].ADSGoogle Scholar
  5. [5]
    O. Philipsen and H. Wittig, String breaking in nonAbelian gauge theories with fundamental matter fields, Phys. Rev. Lett. 81 (1998) 4056 [Erratum ibid. 83 (1999) 2684] [hep-lat/9807020] [INSPIRE].
  6. [6]
    ALPHA collaboration, F. Knechtli and R. Sommer, String breaking in SU(2) gauge theory with scalar matter fields, Phys. Lett. B 440 (1998) 345 [hep-lat/9807022] [INSPIRE].
  7. [7]
    M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, String breaking and monopoles: A case study in the 3D Abelian Higgs model, Phys. Lett. B 547 (2002) 269 [hep-lat/0207020] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    SESAM collaboration, G.S. Bali, H. Neff, T. Duessel, T. Lippert and K. Schilling, Observation of string breaking in QCD, Phys. Rev. D 71 (2005) 114513 [hep-lat/0505012] [INSPIRE].
  9. [9]
    M. Pepe and U.J. Wiese, From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory, Phys. Rev. Lett. 102 (2009) 191601 [arXiv:0901.2510] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201 [cond-mat/0408370] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Hebenstreit, J. Berges and D. Gelfand, Simulating fermion production in 1 + 1 dimensional QED, Phys. Rev. D 87 (2013) 105006 [arXiv:1302.5537] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Hebenstreit, J. Berges and D. Gelfand, Real-time dynamics of string breaking, Phys. Rev. Lett. 111 (2013) 201601 [arXiv:1307.4619] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Byrnes, P. Sriganesh, R.J. Bursill and C.J. Hamer, Density matrix renormalization group approach to the massive Schwinger model, Phys. Rev. D 66 (2002) 013002 [hep-lat/0202014] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.C. Bañuls, K. Cichy, K. Jansen and J.I. Cirac, The mass spectrum of the Schwinger model with Matrix Product States, JHEP 11 (2013) 158 [arXiv:1305.3765] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.C. Bañuls, K. Cichy, J.I. Cirac, K. Jansen and H. Saito, Matrix Product States for Lattice Field Theories, PoS(LATTICE 2013)332 [arXiv:1310.4118] [INSPIRE].
  16. [16]
    B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde and F. Verstraete, Matrix product states for gauge field theories, Phys. Rev. Lett. 113 (2014) 091601 [arXiv:1312.6654] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Rico, T. Pichler, M. Dalmonte, P. Zoller and S. Montangero, Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation, Phys. Rev. Lett. 112 (2014) 201601 [arXiv:1312.3127] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Tagliacozzo, A. Celi, A. Zamora and M. Lewenstein, Optical Abelian Lattice Gauge Theories, Annals Phys. 330 (2013) 160 [arXiv:1205.0496] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    L. Tagliacozzo, A. Celi and M. Lewenstein, Tensor Networks for Lattice Gauge Theories with continuous groups, Phys. Rev. X 4 (2014) 041024 [arXiv:1405.4811] [INSPIRE].Google Scholar
  20. [20]
    P. Silvi, E. Rico, T. Calarco and S. Montangero, Lattice Gauge Tensor Networks, New J. Phys. 16 (2014) 103015 [arXiv:1404.7439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    K. Van Acoleyen, B. Buyens, J. Haegeman and F. Verstraete, Matrix product states for Hamiltonian lattice gauge theories, PoS(LATTICE2014)308 [arXiv:1411.0020] [INSPIRE].
  22. [22]
    H. Saito, M.C. Bañuls, K. Cichy, J.I. Cirac and K. Jansen, The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States, PoS(LATTICE2014)302 [arXiv:1412.0596] [INSPIRE].
  23. [23]
    M.C. Bañuls, K. Cichy, J.I. Cirac, K. Jansen and H. Saito, Thermal evolution of the Schwinger model with Matrix Product Operators, arXiv:1505.00279 [INSPIRE].
  24. [24]
    L. Tagliacozzo and G. Vidal, Entanglement renormalization and gauge symmetry, Phys. Rev. B 83 (2011) 115127 [arXiv:1007.4145] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum Computations, Phys. Rev. Lett. 91 (2003) 147902 [quant-ph/0301063].ADSCrossRefGoogle Scholar
  26. [26]
    F. Verstraete, V. Murg and J. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys. 57 (2008) 143 [arXiv:0907.2796].ADSCrossRefGoogle Scholar
  27. [27]
    A.J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech. (2004) P04005 [cond-mat/0403313].
  28. [28]
    J. Ignacio Cirac, P. Maraner and J.K. Pachos, Cold atom simulation of interacting relativistic quantum field theories, Phys. Rev. Lett. 105 (2010) 190403 [arXiv:1006.2975] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    E. Zohar and B. Reznik, Confinement and lattice QED electric flux-tubes simulated with ultracold atoms, Phys. Rev. Lett. 107 (2011) 275301 [arXiv:1108.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Zohar, J.I. Cirac and B. Reznik, Simulating Compact Quantum Electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects, Phys. Rev. Lett. 109 (2012) 125302 [arXiv:1204.6574] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Banerjee et al., Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench, Phys. Rev. Lett. 109 (2012) 175302 [arXiv:1205.6366] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Banerjee et al., Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories, Phys. Rev. Lett. 110 (2013) 125303 [arXiv:1211.2242] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Hauke, D. Marcos, M. Dalmonte and P. Zoller, Quantum simulation of a lattice Schwinger model in a chain of trapped ions, Phys. Rev. X 3 (2013) 041018 [arXiv:1306.2162] [INSPIRE].Google Scholar
  34. [34]
    K. Stannigel et al., Constrained dynamics via the Zeno effect in quantum simulation: Implementing non-Abelian lattice gauge theories with cold atoms, Phys. Rev. Lett. 112 (2014) 120406 [arXiv:1308.0528] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Tagliacozzo, A. Celi, P. Orland and M. Lewenstein, Simulations of non-Abelian gauge theories with optical lattices, Nature Commun. 4 (2013) 2615 [arXiv:1211.2704] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    U.-J. Wiese, Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories, Annalen Phys. 525 (2013) 777 [arXiv:1305.1602] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  37. [37]
    E. Zohar, J.I. Cirac and B. Reznik, Quantum simulations of gauge theories with ultracold atoms: local gauge invariance from angular momentum conservation, Phys. Rev. A 88 (2013) 023617 [arXiv:1303.5040] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Zohar, J.I. Cirac and B. Reznik, Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory, Phys. Rev. Lett. 110 (2013) 125304 [arXiv:1211.2241] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Zohar and B. Reznik, Topological Wilson-loop area law manifested using a superposition of loops, New J. Phys. 15 (2013) 043041 [arXiv:1208.1012] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E. Zohar, J.I. Cirac and B. Reznik, Simulating (2+1)-Dimensional Lattice QED with Dynamical Matter Using Ultracold Atoms, Phys. Rev. Lett. 110 (2013) 055302 [arXiv:1208.4299] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Kosior and K. Sacha, Simulation of non-Abelian lattice gauge theories with a single component atomic gas, arXiv:1403.1221 [INSPIRE].
  42. [42]
    S. Kühn, J.I. Cirac and M.-C. Bañuls, Quantum simulation of the Schwinger model: A study of feasibility, Phys. Rev. A 90 (2014) 042305 [arXiv:1407.4995] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Marcos et al., Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits, Annals Phys. 351 (2014) 634 [arXiv:1407.6066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    U.-J. Wiese, Towards Quantum Simulating QCD, Nucl. Phys. A 931 (2014) 246 [arXiv:1409.7414] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Mezzacapo, E. Rico, C. Sabín, I.L. Egusquiza, L. Lamata and E. Solano, Non-Abelian Lattice Gauge Theories in Superconducting Circuits, arXiv:1505.04720 [INSPIRE].
  46. [46]
    S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S. Pascazio and F.V. Pepe, Discrete Abelian Gauge Theories for Quantum Simulations of QED, J. Phys. A 48 (2015) 30FT01 [arXiv:1503.04340] [INSPIRE].Google Scholar
  47. [47]
    E. Zohar, J.I. Cirac and B. Reznik, Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices, arXiv:1503.02312 [INSPIRE].
  48. [48]
    E. Zohar and M. Burrello, Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D 91 (2015) 054506 [arXiv:1409.3085] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilsons Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix product state representations, Quant. Inf. Comput. 7 (2007) 401 [quant-ph/0608197].MathSciNetMATHGoogle Scholar
  51. [51]
    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326 (2011) 96 [arXiv:1008.3477].ADSCrossRefMATHGoogle Scholar
  52. [52]
    F. Verstraete, J.J. García-Ripoll and J.I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett. 93 (2004) 207204.ADSCrossRefGoogle Scholar
  53. [53]
    H.J. Rothe, Lattice gauge theories: an introduction, World Scientific, Lect. Notes Phys. 82 (2006).Google Scholar
  54. [54]
    C. Michael, Hadronic forces from the lattice, Nucl. Phys. Proc. Suppl. 26 (1992) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Verstraete, D. Porras and J.I. Cirac, Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective, Phys. Rev. Lett. 93 (2004) 227205 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992) 2863 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE].
  58. [58]
    T. Pichler, M. Dalmonte, E. Rico, P. Zoller and S. Montangero, Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks, arXiv:1505.04440 [INSPIRE].
  59. [59]
    P.J. Steinhardt, SU(2) Flavor Schwinger Model on the Lattice, Phys. Rev. D 16 (1977) 1782 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Stefan Kühn
    • 1
  • Erez Zohar
    • 1
  • J. Ignacio Cirac
    • 1
  • Mari Carmen Bañuls
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations