Dark matter directionality revisited with a high pressure xenon gas detector

  • Gopolang Mohlabeng
  • Kyoungchul Kong
  • Jin Li
  • Adam Para
  • Jonghee YooEmail author
Open Access
Regular Article - Experimental Physics


An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect in a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions.

In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ∼50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.


Dark Matter and Double Beta Decay 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys. 571 (2014) A1 [arXiv:1303.5062] [INSPIRE].
  2. [2]
    S. Arrenberg et al., Working group report: dark matter complementarity, arXiv:1310.8621 [INSPIRE].
  3. [3]
    P. Gondolo, Recoil momentum spectrum in directional dark matter detectors, Phys. Rev. D 66 (2002) 103513 [hep-ph/0209110] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C.J. Copi and L.M. Krauss, Angular signatures for galactic halo WIMP scattering in direct detectors: Prospects and challenges, Phys. Rev. D 63 (2001) 043507 [astro-ph/0009467] [INSPIRE].ADSGoogle Scholar
  5. [5]
    DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].
  6. [6]
    S. Ahlen et al., The case for a directional dark matter detector and the status of current experimental efforts, Int. J. Mod. Phys. A 25 (2010) 1 [arXiv:0911.0323] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.N. Spergel, The motion of the Earth and the detection of WIMPS, Phys. Rev. D 37 (1988) 1353 [INSPIRE].ADSGoogle Scholar
  8. [8]
    F. Mayet and J. Billard, A review on the discovery reach of dark matter directional detection, J. Phys. Conf. Ser. 469 (2013) 012013 [arXiv:1310.0214] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    J. Billard, F. Mayet and D. Santos, Assessing the discovery potential of directional detection of dark matter, Phys. Rev. D 85 (2012) 035006 [arXiv:1110.6079] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F. Mayet, J. Billard and D. Santos, Directional detection of galactic dark matter, Springer Proc. Phys. 148 (2013) 117 [arXiv:1207.1053] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    N. Bozorgnia, G.B. Gelmini and P. Gondolo, Aberration features in directional dark matter detection, JCAP 08 (2012) 011 [arXiv:1205.2333] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.M. Green and B. Morgan, Optimizing WIMP directional detectors, Astropart. Phys. 27 (2007) 142 [astro-ph/0609115] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.K. Lee, Harmonics in the dark-matter sky: directional detection in the Fourier-Bessel basis, JCAP 03 (2014) 047 [arXiv:1401.6179] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.S.M. Alves, S.E. Hedri and J.G. Wacker, Dark matter in 3D, arXiv:1204.5487 [INSPIRE].
  15. [15]
    B.J. Kavanagh, Discretising the velocity distribution for directional dark matter experiments, arXiv:1502.0422.
  16. [16]
    A.M. Green, Dependence of direct detection signals on the WIMP velocity distribution, JCAP 10 (2010) 034 [arXiv:1009.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Drukier et al., New dark matter detectors using DNA for nanometer tracking, arXiv:1206.6809 [INSPIRE].
  18. [18]
    D. Santos et al., MIMAC: a micro-tpc matrix for dark matter directional detection, J. Phys. Conf. Ser. 460 (2013) 012007 [arXiv:1304.2255] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    S. Burgos et al., First results from the DRIFT-IIA dark matter detector, Astropart. Phys. 28 (2007) 409 [arXiv:0707.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Daw et al., Long-term study of backgrounds in the DRIFT-II directional dark matter experiment, 2014 JINST 9 P07021 [arXiv:1307.5525] [INSPIRE].
  21. [21]
    K. Miuchi et al., Direction-sensitive dark matter search results in a surface laboratory, Phys. Lett. B 654 (2007) 58 [arXiv:0708.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Miuchi et al., First underground results with NEWAGE-0.3a direction-sensitive dark matter detector, Phys. Lett. B 686 (2010) 11 [arXiv:1002.1794] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    DM-TPC collaboration, G. Sciolla et al., Toward directional detection of dark matter with the DM-TPC detector, arXiv:0806.2673 [INSPIRE].
  24. [24]
    J. Billard, F. Mayet and D. Santos, Three-dimensional track reconstruction for directional dark matter detection, JCAP 04 (2012) 006 [arXiv:1202.3372] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Billard et al., In situ measurement of the electron drift velocity for upcoming directional dark matter detectors, 2014 JINST 9 P01013 [arXiv:1305.2360] [INSPIRE].
  26. [26]
    DRIFT collaboration, J.B.R. Battat et al., First background-free limit from a directional dark matter experiment: results from a fully fiducialised DRIFT detector, arXiv:1410.7821 [INSPIRE].
  27. [27]
    S.K. Lee and A.H.G. Peter, Probing the local velocity distribution of WIMP dark matter with directional detectors, JCAP 04 (2012) 029 [arXiv:1202.5035] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. Morgan and A.M. Green, Probing light WIMPs with directional detection experiments, Phys. Rev. D 86 (2012) 083544 [arXiv:1208.4992] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A.M. Green and B. Morgan, Consequences of statistical sense determination for WIMP directional detection, Phys. Rev. D 77 (2008) 027303 [arXiv:0711.2234] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D.R. Nygren, Columnar recombination: a tool for nuclear recoil directional sensitivity in a xenon-based direct detection WIMP search, J. Phys. Conf. Ser. 460 (2013) 012006 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    J. Billard, Comparing readout strategies to directly detect dark matter, Phys. Rev. D 91 (2015) 023513 [arXiv:1411.5946] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Bozorgnia, G.B. Gelmini and P. Gondolo, Ring-like features in directional dark matter detection, JCAP 06 (2012) 037 [arXiv:1111.6361] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Burgos et al., First measurement of the head-tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches, Astropart. Phys. 31 (2009) 261 [arXiv:0809.1831] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Dujmic et al., Observation of thehead-taileffect in nuclear recoils of low-energy neutrons, Nucl. Instrum. Meth. A 584 (2008) 327 [Erratum ibid. A 592 (2008) 123] [arXiv:0708.2370] [INSPIRE].
  36. [36]
    T. Tanimori et al., Detecting the WIMP-wind via spin-dependent interactions, Phys. Lett. B 578 (2004) 241 [astro-ph/0310638] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Santos, O. Guillaudin, T. Lamy, F. Mayet and E. Moulin, MIMAC: a micro-TPC matrix of chambers for direct detection of WIMPs, J. Phys. Conf. Ser. 65 (2007) 012012 [astro-ph/0703310] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    G.C. Jaffe, Zur Theorie der Ionisation in Kolonnen, Annalen Phys. 42 (1913) 303ADSCrossRefGoogle Scholar
  39. [39]
    P. Grothaus, M. Fairbairn and J. Monroe, Directional dark matter detection beyond the neutrino bound, Phys. Rev. D 90 (2014) 055018 [arXiv:1406.5047] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.S. Alenazi and P. Gondolo, Directional recoil rates for WIMP direct detection, Phys. Rev. D 77 (2008) 043532 [arXiv:0712.0053] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C.J. Copi, L.M. Krauss, D. Simmons-Duffin and S.R. Stroiney, Assessing alternatives for directional detection of a WIMP halo, Phys. Rev. D 75 (2007) 023514 [astro-ph/0508649] [INSPIRE].ADSGoogle Scholar
  43. [43]
    SCENE collaboration, H. Cao et al., Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon, Phys. Rev. D 91 (2015) 092007 [arXiv:1406.4825] [INSPIRE].
  44. [44]
    M. Szydagis et al., NEST: a comprehensive model for scintillation yield in liquid xenon, 2011 JINST 6 P10002 [arXiv:1106.1613] [INSPIRE].
  45. [45]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gopolang Mohlabeng
    • 1
  • Kyoungchul Kong
    • 1
  • Jin Li
    • 2
  • Adam Para
    • 3
  • Jonghee Yoo
    • 3
    Email author
  1. 1.Department of Physics and AstronomyUniversity of KansasLawrenceUnited States
  2. 2.Center for Underground Physics, Institute for Basic Science (IBS)DaejonSouth Korea
  3. 3.Fermi National Accelerator LaboratoryBataviaUnited States

Personalised recommendations