Constraining dark sectors with monojets and dijets

  • Mikael ChalaEmail author
  • Felix Kahlhoefer
  • Matthew McCullough
  • Germano Nardini
  • Kai Schmidt-Hoberg
Open Access
Regular Article - Theoretical Physics


We consider dark sector particles (DSPs) that obtain sizeable interactions with Standard Model fermions from a new mediator. While these particles can avoid observation in direct detection experiments, they are strongly constrained by LHC measurements. We demonstrate that there is an important complementarity between searches for DSP production and searches for the mediator itself, in particular bounds on (broad) dijet resonances. This observation is crucial not only in the case where the DSP is all of the dark matter but whenever — precisely due to its sizeable interactions with the visible sector — the DSP annihilates away so efficiently that it only forms a dark matter subcomponent. To highlight the different roles of DSP direct detection and LHC monojet and dijet searches, as well as perturbativity constraints, we first analyse the exemplary case of an axial-vector mediator and then generalise our results. We find important implications for the interpretation of LHC dark matter searches in terms of simplified models.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, Making the most of the relic density for dark matter searches at the LHC 14 TeV run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].
  7. [7]
    P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Lebedev and Y. Mambrini, Axial dark matter: the case for an invisible Z, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.M. Lozano, M. Peiró and P. Soler, Isospin violating dark matter in Stückelberg portal scenarios, JHEP 04 (2015) 175 [arXiv:1503.01780] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  19. [19]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  20. [20]
    UA2 collaboration, J. Alitti et al., A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].
  21. [21]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
  22. [22]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  24. [24]
    ATLAS collaboration, Search for a dijet resonance produced in association with a leptonically decaying W or Z boson with the ATLAS detector at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-074, CERN, Geneva Switzerland (2013) [ATLAS-COM-CONF-2013-078].
  25. [25]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Gelmini and P. Gondolo, DM production mechanisms, arXiv:1009.3690 [INSPIRE].
  28. [28]
    Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].Google Scholar
  29. [29]
    J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Searches for dark matter signals in simplified models at future hadron colliders, Phys. Rev. D 91 (2015) 095020 [arXiv:1503.02931] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  38. [38]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, arXiv:1501.03490 [INSPIRE].
  39. [39]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    M. Duerr and P. Fileviez Perez, Baryonic dark matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Z dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H. An, R. Huo and L.-T. Wang, Searching for low mass dark portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].ADSGoogle Scholar
  47. [47]
    E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  51. [51]
    C. Savage, A. Scaffidi, M. White and A.G. Williams, LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc, arXiv:1502.02667 [INSPIRE].
  52. [52]
    P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev. D 88 (2013) 083516 [Erratum ibid. D 89 (2014) 029901] [arXiv:1304.7684] [INSPIRE].
  53. [53]
    P.J. Fox, Y. Kahn and M. McCullough, Taking halo-independent dark matter methods out of the bin, JCAP 10 (2014) 076 [arXiv:1403.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].
  55. [55]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  58. [58]
    T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a compelling case for annihilating dark matter, arXiv:1402.6703 [INSPIRE].
  59. [59]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Rajaraman, W. Shepherd, T.M.P. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  64. [64]
    H. Dreiner, D. Schmeier and J. Tattersall, Contact interactions probe effective dark matter models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator dark matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  67. [67]
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev. D 88 (2013) 035021 [Erratum ibid. D 90 (2014) 079901] [arXiv:1306.2629] [INSPIRE].
  71. [71]
    C.-W. Chiang, T. Nomura and K. Yagyu, Leptophobic Z in models with multiple Higgs doublet fields, JHEP 05 (2015) 127 [arXiv:1502.00855] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  75. [75]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  76. [76]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  77. [77]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  81. [81]
    F. del Águila and M. Chala, LHC bounds on lepton number violation mediated by doubly and singly-charged scalars, JHEP 03 (2014) 027 [arXiv:1311.1510] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  83. [83]
    CDF and D0 collaborations, T.A. Aaltonen et al., Combination of measurements of the top-quark pair production cross section from the Tevatron collider, Phys. Rev. D 89 (2014) 072001 [arXiv:1309.7570] [INSPIRE].
  84. [84]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV in dilepton final states containing one τ lepton, Phys. Lett. B 739 (2014) 23 [arXiv:1407.6643] [INSPIRE].
  85. [85]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(αS4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    Y. Bai and T.M.P. Tait, Searches with mono-leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].
  88. [88]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  89. [89]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  90. [90]
    F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].ADSGoogle Scholar
  91. [91]
    ATLAS collaboration, Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC, ATL-PHYS-PUB-2014-007, CERN, Geneva Switzerland (2014).
  92. [92]
    F. Yu, Di-jet resonances at future hadron colliders: a Snowmass whitepaper, arXiv:1308.1077 [INSPIRE].
  93. [93]
    C. Doglioni, private communication.Google Scholar
  94. [94]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-EXO-11-094, CERN, Geneva Switzerland (2012).
  95. [95]
    ATLAS collaboration, Search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 4.7 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].
  96. [96]
    CMS collaboration, Search for Z resonances decaying to \( t\overline{t} \) in dilepton+jets final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].
  97. [97]
    C. Doglioni, Dijet benchmarks for calorimeters, presented at FHC BSM meeting, February 26 2015.Google Scholar
  98. [98]
    M. de Vries, Four-quark effective operators at hadron colliders, JHEP 03 (2015) 095 [arXiv:1409.4657] [INSPIRE].CrossRefGoogle Scholar
  99. [99]
    CMS collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 746 (2015) 79 [arXiv:1411.2646] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mikael Chala
    • 1
    Email author
  • Felix Kahlhoefer
    • 1
  • Matthew McCullough
    • 2
  • Germano Nardini
    • 1
  • Kai Schmidt-Hoberg
    • 1
  1. 1.DESYHamburgGermany
  2. 2.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations