Advertisement

Pv criticality in quasitopological gravity

  • Robie A. HennigarEmail author
  • W. G. Brenna
  • Robert B. Mann
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the thermodynamic behaviour of AdS quasitopological black hole solutions in the context of extended thermodynamic phase space, in which the cosmological constant induces a pressure with a conjugate volume. We find that the third order exact quasitopological solution exhibits features consistent with the third order Lovelock solutions for positive quasitopological coupling, including multiple reentrant phase transitions and isolated critical points. For negative coupling we find the first instances of both reentrant phase transitions and thermodynamic singularities in five dimensions, along with other modified thermodynamic behaviour compared to Einstein-AdS-Gauss Bonnet gravity.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    B.P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84 (2011) 127503 [arXiv:1109.0198] [INSPIRE].ADSGoogle Scholar
  6. [6]
    B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?, arXiv:1209.1272 [INSPIRE].
  8. [8]
    M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Larranaga and A. Cardenas, Geometric Thermodynamics of Schwarzschild-AdS black hole with a Cosmological Constant as State Variable, J. Korean Phys. Soc. 60 (2012) 987 [arXiv:1108.2205] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Larranaga and S. Mojica, Geometric Thermodynamics of Kerr-AdS black hole with a Cosmological Constant as State Variable, Abraham Zelmanov J. 5 (2012) 68 [arXiv:1204.3696] [INSPIRE].Google Scholar
  11. [11]
    G.W. Gibbons, What is the Shape of a Black Hole?, AIP Conf. Proc. 1460 (2012) 90 [arXiv:1201.2340] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Gunasekaran, R.B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Belhaj, M. Chabab, H. El Moumni and M.B. Sedra, On Thermodynamics of AdS Black Holes in Arbitrary Dimensions, Chin. Phys. Lett. 29 (2012) 100401 [arXiv:1210.4617] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Lü, Y. Pang, C.N. Pope and J.F. Vazquez-Poritz, AdS and Lifshitz Black Holes in Conformal and Einstein-Weyl Gravities, Phys. Rev. D 86 (2012) 044011 [arXiv:1204.1062] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Smailagic and E. Spallucci, Thermodynamical phases of a regular SAdS black hole, Int. J. Mod. Phys. D 22 (2013) 1350010 [arXiv:1212.5044] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.H. Hendi and M.H. Vahidinia, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source, Phys. Rev. D 88 (2013) 084045 [arXiv:1212.6128] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.-G. Cai, L.-M. Cao, L. Li and R.-Q. Yang, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP 09 (2013) 005 [arXiv:1306.6233] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Kubiznak and R.B. Mann, Black Hole Chemistry, arXiv:1404.2126 [INSPIRE].
  20. [20]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Large-N phases, gravitational instantons and the nuts and bolts of AdS holography, Phys. Rev. D 59 (1999) 064010 [hep-th/9808177] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    M. Cvetič and S.S. Gubser, Thermodynamic stability and phases of general spinning branes, JHEP 07 (1999) 010 [hep-th/9903132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B.P. Dolan, On the thermodynamic stability of rotating black holes in higher dimensionsa comparision of thermodynamic ensembles, Class. Quant. Grav. 31 (2014) 135012 [arXiv:1312.6810] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    B.P. Dolan, The compressibility of rotating black holes in D-dimensions, Class. Quant. Grav. 31 (2014) 035022 [arXiv:1308.5403] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann and J. Traschen, Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev. D 87 (2013) 104017 [arXiv:1301.5926] [INSPIRE].ADSGoogle Scholar
  27. [27]
    N. Altamirano, D. Kubiznak and R.B. Mann, Reentrant phase transitions in rotating anti-de Sitter black holes, Phys. Rev. D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.M. Frassino, D. Kubiznak, R.B. Mann and F. Simovic, Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics, JHEP 09 (2014) 080 [arXiv:1406.7015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.-C. Zou, S.-J. Zhang and B. Wang, Critical behavior of Born-Infeld AdS black holes in the extended phase space thermodynamics, Phys. Rev. D 89 (2014) 044002 [arXiv:1311.7299] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D.-C. Zou, Y. Liu and B. Wang, Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble, Phys. Rev. D 90 (2014) 044063 [arXiv:1404.5194] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M.-S. Ma and R. Zhao, Phase transition and entropy spectrum of the BTZ black hole with torsion, Phys. Rev. D 89 (2014) 044005 [arXiv:1310.1491] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M.-S. Ma, F. Liu and R. Zhao, Continuous phase transition and critical behaviors of 3D black hole with torsion, Class. Quant. Grav. 31 (2014) 095001 [arXiv:1403.0449] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    S.-W. Wei and Y.-X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90 (2014) 044057 [arXiv:1402.2837] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.-X. Mo and W.-B. Liu, Ehrenfest scheme for PV criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes, Phys. Rev. D 89 (2014) 084057 [arXiv:1404.3872] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.-X. Mo, X.-X. Zeng, G.-Q. Li, X. Jiang and W.-B. Liu, A unified phase transition picture of the charged topological black hole in Hořava-Lifshitz gravity, JHEP 10 (2013) 056 [arXiv:1404.2497] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    J.-X. Mo and W.-B. Liu, P-V criticality of topological black holes in Lovelock Born-Infeld gravity, Eur. Phys. J. C 74 (2014) 2836 [arXiv:1401.0785] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.-C. Zhang, M.-S. Ma, H.-H. Zhao and R. Zhao, Thermodynamics of phase transition in higher-dimensional Reissner-Nordström-de Sitter black hole, Eur. Phys. J. C 74 (2014) 3052 [arXiv:1403.2151] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H.-S. Liu, H. Lü and C.N. Pope, Thermodynamics of Einstein-Proca AdS Black Holes, JHEP 06 (2014) 109 [arXiv:1402.5153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Y. Liu, D.-C. Zou and B. Wang, Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes, JHEP 09 (2014) 179 [arXiv:1405.2644] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C.V. Johnson, Holographic Heat Engines, Class. Quant. Grav. 31 (2014) 205002 [arXiv:1404.5982] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Rajagopal, D. Kubizňák and R.B. Mann, Van der Waals black hole, Phys. Lett. B 737 (2014) 277 [arXiv:1408.1105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    T. Delsate and R. Mann, Van Der Waals Black Holes in d dimensions, JHEP 02 (2015) 070 [arXiv:1411.7850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    N. Altamirano, D. Kubizňák, R.B. Mann and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies 2 (2014) 89 [arXiv:1401.2586] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B.P. Dolan, A. Kostouki, D. Kubizňák and R.B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav. 31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoffs theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    W.G. Brenna and R.B. Mann, Quasi-topological Reissner-Nordström Black Holes, Phys. Rev. D 86 (2012) 064035 [arXiv:1206.4738] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R.B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav. 14 (1997) L109 [gr-qc/9607071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    C. Hudson, The Mutual Solubility of Nicotine in Water, Z. Phys. Chem. 47 (1904) 113.Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Robie A. Hennigar
    • 1
    Email author
  • W. G. Brenna
    • 1
  • Robert B. Mann
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations