Accidental matter at the LHC

  • Luca Di Luzio
  • Ramona Gröber
  • Jernej F. Kamenik
  • Marco Nardecchia
Open Access
Regular Article - Theoretical Physics

Abstract

We classify weak-scale extensions of the Standard Model which automatically preserve its accidental and approximate symmetry structure at the renormalizable level and which are hence invisible to low-energy indirect probes. By requiring the consistency of the effective field theory up to scales of Λeff ≈ 1015 GeV and after applying cosmological constraints, we arrive at a finite set of possibilities that we analyze in detail. One of the most striking signatures of this framework is the presence of new charged and/or colored states which can be efficiently produced in high-energy particle colliders and which are stable on the scale of detectors.

Keywords

Beyond Standard Model Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V. Cirigliano and M.J. Ramsey-Musolf, Low energy probes of physics beyond the standard model, Prog. Part. Nucl. Phys. 71 (2013) 2 [arXiv:1304.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.F. Kamenik, Flavor constraints on new physics, Mod. Phys. Lett. A 29 (2014) 1430021.ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Cirelli, F. Sala and M. Taoso, Wino-like minimal dark matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 1501 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  8. [8]
    J. Jaeckel, A force beyond the standard modelStatus of the quest for hidden photons, Frascati Phys. Ser. 56 (2012) 172 [arXiv:1303.1821] [INSPIRE].Google Scholar
  9. [9]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Willenbrock, Symmetries of the standard model, hep-ph/0410370 [INSPIRE].
  12. [12]
    S.S. AbdusSalam and T.A. Chowdhury, Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology, JCAP 05 (2014) 026 [arXiv:1310.8152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  17. [17]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  18. [18]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1.Google Scholar
  19. [19]
    J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev. D 49 (1994) 1409 [hep-ph/9309262] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs uncovering light scalar remnants of high scale matter unification, JHEP 11 (2012) 130 [arXiv:1208.1266] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    LHC Higgs cross section working group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.
  25. [25]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
  26. [26]
    I. Doršner et al., New physics models facing lepton flavor violating Higgs decays at the percent level, JHEP 06 (2015) 108 [arXiv:1502.07784] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T.A. collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, arXiv:1207.0210 [INSPIRE].
  28. [28]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. B 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].
  29. [29]
    T.A. collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  30. [30]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].
  31. [31]
    CMS collaboration, Higgs to bb in the VBF channel, CMS-PAS-HIG-13-011 (2013).
  32. [32]
    CMS collaboration, Search for Higgs boson production in association with a top-quark pair and decaying to bottom quarks or tau leptons, CMS-PAS-HIG-13-019 (2013).
  33. [33]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  34. [34]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  35. [35]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  36. [36]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to ZZllll and llνν, CMS-PAS-HIG-14-002 (2014).
  37. [37]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened gravity and the extension of the standard model up to infinite energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Grober, M. Muhlleitner, E. Popenda and A. Wlotzka, Light stop decays into \( Wb{\tilde{\chi}}_1^0 \) near the kinematic threshold, Phys. Lett. B 747 (2015) 144 [arXiv:1502.05935] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Del Nobile, M. Nardecchia and P. Panci, On decaying minimal dark matter, work in progress.Google Scholar
  45. [45]
    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Fields and S. Sarkar, Big-Bang nucleosynthesis (2006 Particle Data Group mini-review), astro-ph/0601514 [INSPIRE].
  47. [47]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G.D. Kribs and I.Z. Rothstein, Bounds on longlived relics from diffuse gamma-ray observations, Phys. Rev. D 55 (1997) 4435 [Erratum ibid. D 56 (1997) 1822] [hep-ph/9610468] [INSPIRE].
  49. [49]
    Fermi-LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].
  50. [50]
    S. Burdin et al., Non-collider searches for stable massive particles, Phys. Rept. 582 (2015) 1 [arXiv:1410.1374] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Langacker and G. Steigman, Requiem for an FCHAMP? Fractionally CHArged, Massive Particle, Phys. Rev. D 84 (2011) 065040 [arXiv:1107.3131] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M.L. Perl, E.R. Lee and D. Loomba, Searches for fractionally charged particles, Ann. Rev. Nucl. Part. Sci. 59 (2009) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, arXiv:1503.08749 [INSPIRE].
  56. [56]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.ADSMathSciNetMATHGoogle Scholar
  61. [61]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Lindley, Cosmological constraints on the lifetime of massive particles, Astrophys. J. 294 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M.H. Reno and D. Seckel, Primordial nucleosynthesis: the effects of injecting hadrons, Phys. Rev. D 37 (1988) 3441 [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Is the universe closed by baryons? Nucleosynthesis with a late decaying massive particle, Astrophys. J. 330 (1988) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R.J. Scherrer and M.S. Turner, Primordial nucleosynthesis with decaying particles. 1. Entropy producing decays. 2. Inert decays, Astrophys. J. 331 (1988) 19 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos and S. Sarkar, Astrophysical constraints on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Pospelov, Particle physics catalysis of thermal Big Bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    K. Kohri and F. Takayama, Big bang nucleosynthesis with long lived charged massive particles, Phys. Rev. D 76 (2007) 063507 [hep-ph/0605243] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Kaplinghat and A. Rajaraman, Big Bang nucleosynthesis with bound states of long-lived charged particles, Phys. Rev. D 74 (2006) 103004 [astro-ph/0606209] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C. Bird, K. Koopmans and M. Pospelov, Primordial Lithium abundance in catalyzed Big Bang nucleosynthesis, Phys. Rev. D 78 (2008) 083010 [hep-ph/0703096] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Jittoh et al., Possible solution to the Li-7 problem by the long lived stau, Phys. Rev. D 76 (2007) 125023 [arXiv:0704.2914] [INSPIRE].ADSGoogle Scholar
  76. [76]
    K. Jedamzik, The cosmic Li-6 and Li-7 problems and BBN with long-lived charged massive particles, Phys. Rev. D 77 (2008) 063524 [arXiv:0707.2070] [INSPIRE].ADSGoogle Scholar
  77. [77]
    T. Jittoh et al., Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario, Phys. Rev. D 78 (2008) 055007 [arXiv:0805.3389] [INSPIRE].ADSGoogle Scholar
  78. [78]
    D. Cumberbatch et al., Solving the cosmic lithium problems with primordial late-decaying particles, Phys. Rev. D 76 (2007) 123005 [arXiv:0708.0095] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida and G.J. Mathews, A simultaneous solution to the 6Li and 7Li Big Bang nucleosynthesis problems from a long-lived negatively-charged leptonic particle, Phys. Rev. D 76 (2007) 121302 [arXiv:0711.3854] [INSPIRE].ADSGoogle Scholar
  80. [80]
    B.D. Fields, The primordial lithium problem, Ann. Rev. Nucl. Part. Sci. 61 (2011) 47 [arXiv:1203.3551] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G. Steigman, Primordial nucleosynthesis in the precision cosmology era, Ann. Rev. Nucl. Part. Sci. 57 (2007) 463 [arXiv:0712.1100].ADSCrossRefGoogle Scholar
  82. [82]
    R.E. Lopez and M.S. Turner, An accurate calculation of the Big Bang prediction for the abundance of primordial helium, Phys. Rev. D 59 (1999) 103502 [astro-ph/9807279] [INSPIRE].
  83. [83]
    V.F. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073].CrossRefMATHGoogle Scholar
  84. [84]
    S. Weinberg, Cosmology, Oxford University Press, Oxford U.K. (2008).MATHGoogle Scholar
  85. [85]
    M. Pospelov and J. Pradler, Big Bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054].ADSCrossRefGoogle Scholar
  86. [86]
    C. Englert et al., Precision measurements of higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    I. Picek and B. Radovcic, Enhancement of hγγ by seesaw-motivated exotic scalars, Phys. Lett. B 719 (2013) 404 [arXiv:1210.6449] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  89. [89]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].
  90. [90]
    CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].
  91. [91]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  92. [92]
    B. Ren, K. Tsumura and X.-G. He, A Higgs quadruplet for type III seesaw and implications for μeγ and μ-e conversion, Phys. Rev. D 84 (2011) 073004 [arXiv:1107.5879] [INSPIRE].ADSGoogle Scholar
  93. [93]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  94. [94]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].ADSGoogle Scholar
  95. [95]
    ALEPH collaboration, R. Barate et al., Search for pair production of longlived heavy charged particles in e+e annihilation, Phys. Lett. B 405 (1997) 379 [hep-ex/9706013] [INSPIRE].
  96. [96]
    DELPHI collaboration, P. Abreu et al., Search for heavy stable and longlived particles in e+ecollisions at \( \sqrt{s}=189 \) GeV, Phys. Lett. B 478 (2000) 65 [hep-ex/0103038] [INSPIRE].
  97. [97]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e+e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].
  98. [98]
    OPAL collaboration, G. Abbiendi et al., Search for stable and longlived massive charged particles in e+e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [INSPIRE].
  99. [99]
    H1 collaboration, A. Aktas et al., Measurement of anti-deuteron photoproduction and a search for heavy stable charged particles at HERA, Eur. Phys. J. C 36 (2004) 413 [hep-ex/0403056] [INSPIRE].
  100. [100]
    D0 collaboration, V.M. Abazov et al., Search for long-lived charged massive particles with the D0 detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [INSPIRE].
  101. [101]
    CDF collaboration, T. Aaltonen et al., Search for long-lived massive charged particles in 1.96 TeV \( \overline{p}p \) collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [INSPIRE].
  102. [102]
    D0 collaboration, V.M. Abazov et al., Search for charged massive long-lived particles at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 87 (2013) 052011 [arXiv:1211.2466] [INSPIRE].
  103. [103]
    CMS collaboration, Search for Heavy stable charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC, Phys. Lett. B 698 (2011) 353 [arXiv:1102.0459] [INSPIRE].
  105. [105]
    ATLAS collaboration, Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].
  106. [106]
    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].
  107. [107]
    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].
  108. [108]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  109. [109]
    CMS collaboration, Reinterpreting the results of the search for long-lived charged particles in the pMSSM and other BSM scenarios, CMS-PAS-EXO-13-006 (2013).
  110. [110]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  111. [111]
    MoEDAL collaboration, J. Pinfold et al., Technical design report of the MoEDAL experiment, CERN-LHCC-2009-006 (2009).
  112. [112]
    MoEDAL collaboration, B. Acharya et al., The physics programme of the MoEDAL experiment at the LHC, Int. J. Mod. Phys. A 29 (2014) 1430050 [arXiv:1405.7662] [INSPIRE].
  113. [113]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  114. [114]
    N. Zhou, D. Berge and D. Whiteson, Mono-everything: combined limits on dark matter production at colliders from multiple final states, Phys. Rev. D 87 (2013) 095013 [arXiv:1302.3619] [INSPIRE].ADSGoogle Scholar
  115. [115]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
  116. [116]
    Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  117. [117]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  118. [118]
    ALEPH collaboration, A. Heister et al., Search for charginos nearly mass degenerate with the lightest neutralino in e+e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].
  119. [119]
    DELPHI collaboration, P. Abreu et al., Update of the search for charginos nearly mass-degenerate with the lightest neutralino, Phys. Lett. B 485 (2000) 95 [hep-ex/0103035] [INSPIRE].
  120. [120]
    L3 collaboration, M. Acciarri et al., Search for charginos with a small mass difference with the lightest supersymmetric particle at \( \sqrt{S}=189 \) GeV, Phys. Lett. B 482 (2000) 31 [hep-ex/0002043] [INSPIRE].
  121. [121]
    OPAL collaboration, G. Abbiendi et al., Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].
  122. [122]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  123. [123]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt{s}=192 \) GeV to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].
  124. [124]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].
  125. [125]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  126. [126]
    S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour and B.R. Webber, Implementation of supersymmetric processes in the HERWIG event generator, JHEP 04 (2002) 028 [hep-ph/0204123] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
  128. [128]
    A. De Rujula, H. Georgi and S.L. Glashow, Hadron masses in a gauge theory, Phys. Rev. D 12 (1975) 147 [INSPIRE].ADSGoogle Scholar
  129. [129]
    A.C. Kraan, Interactions of heavy stable hadronizing particles, Eur. Phys. J. C 37 (2004) 91 [hep-ex/0404001] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A. Mafi and S. Raby, An analysis of a heavy gluino LSP at CDF: the heavy gluino window, Phys. Rev. D 62 (2000) 035003 [hep-ph/9912436] [INSPIRE].ADSGoogle Scholar
  132. [132]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].
  133. [133]
    R. Mackeprang and A. Rizzi, Interactions of coloured heavy stable particles in matter, Eur. Phys. J. C 50 (2007) 353 [hep-ph/0612161] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    R. Mackeprang and D. Milstead, An updated description of heavy-hadron interactions in GEANT-4, Eur. Phys. J. C 66 (2010) 493 [arXiv:0908.1868] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  136. [136]
    CMS collaboration, Search for decays of stopped long-lived particles produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 151 [arXiv:1501.05603] [INSPIRE].
  137. [137]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
  138. [138]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].ADSGoogle Scholar
  139. [139]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    K. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato et al., Letter of intent: the Hyper-Kamiokande experimentDetector design and physics potential, arXiv:1109.3262 [INSPIRE].
  142. [142]
    A. Garfagnini, Neutrinoless double beta decay experiments, arXiv:1408.2455 [INSPIRE].
  143. [143]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the standard model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Luca Di Luzio
    • 1
  • Ramona Gröber
    • 2
  • Jernej F. Kamenik
    • 3
    • 4
    • 5
  • Marco Nardecchia
    • 6
  1. 1.Dipartimento di Fisica, Università di Genova and INFN — Sezione di GenovaGenovaItaly
  2. 2.INFN — Sezione di Roma TreRomaItaly
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  5. 5.CERN TH-PH DivisionMeyrinSwitzerland
  6. 6.DAMTPUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations