Accidental matter at the LHC

  • Luca Di Luzio
  • Ramona Gröber
  • Jernej F. Kamenik
  • Marco Nardecchia
Open Access
Regular Article - Theoretical Physics


We classify weak-scale extensions of the Standard Model which automatically preserve its accidental and approximate symmetry structure at the renormalizable level and which are hence invisible to low-energy indirect probes. By requiring the consistency of the effective field theory up to scales of Λeff ≈ 1015 GeV and after applying cosmological constraints, we arrive at a finite set of possibilities that we analyze in detail. One of the most striking signatures of this framework is the presence of new charged and/or colored states which can be efficiently produced in high-energy particle colliders and which are stable on the scale of detectors.


Beyond Standard Model Effective field theories 


  1. [1]
    G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V. Cirigliano and M.J. Ramsey-Musolf, Low energy probes of physics beyond the standard model, Prog. Part. Nucl. Phys. 71 (2013) 2 [arXiv:1304.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.F. Kamenik, Flavor constraints on new physics, Mod. Phys. Lett. A 29 (2014) 1430021.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Cirelli, F. Sala and M. Taoso, Wino-like minimal dark matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 1501 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  8. [8]
    J. Jaeckel, A force beyond the standard modelStatus of the quest for hidden photons, Frascati Phys. Ser. 56 (2012) 172 [arXiv:1303.1821] [INSPIRE].Google Scholar
  9. [9]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Willenbrock, Symmetries of the standard model, hep-ph/0410370 [INSPIRE].
  12. [12]
    S.S. AbdusSalam and T.A. Chowdhury, Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology, JCAP 05 (2014) 026 [arXiv:1310.8152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  17. [17]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  18. [18]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1.Google Scholar
  19. [19]
    J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].ADSGoogle Scholar
  20. [20]
    L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev. D 49 (1994) 1409 [hep-ph/9309262] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs uncovering light scalar remnants of high scale matter unification, JHEP 11 (2012) 130 [arXiv:1208.1266] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    LHC Higgs cross section working group,
  25. [25]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
  26. [26]
    I. Doršner et al., New physics models facing lepton flavor violating Higgs decays at the percent level, JHEP 06 (2015) 108 [arXiv:1502.07784] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    T.A. collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, arXiv:1207.0210 [INSPIRE].
  28. [28]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. B 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].
  29. [29]
    T.A. collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  30. [30]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].
  31. [31]
    CMS collaboration, Higgs to bb in the VBF channel, CMS-PAS-HIG-13-011 (2013).
  32. [32]
    CMS collaboration, Search for Higgs boson production in association with a top-quark pair and decaying to bottom quarks or tau leptons, CMS-PAS-HIG-13-019 (2013).
  33. [33]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  34. [34]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  35. [35]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  36. [36]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to ZZllll and llνν, CMS-PAS-HIG-14-002 (2014).
  37. [37]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened gravity and the extension of the standard model up to infinite energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Grober, M. Muhlleitner, E. Popenda and A. Wlotzka, Light stop decays into \( Wb{\tilde{\chi}}_1^0 \) near the kinematic threshold, Phys. Lett. B 747 (2015) 144 [arXiv:1502.05935] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    E. Del Nobile, M. Nardecchia and P. Panci, On decaying minimal dark matter, work in progress.Google Scholar
  45. [45]
    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Fields and S. Sarkar, Big-Bang nucleosynthesis (2006 Particle Data Group mini-review), astro-ph/0601514 [INSPIRE].
  47. [47]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G.D. Kribs and I.Z. Rothstein, Bounds on longlived relics from diffuse gamma-ray observations, Phys. Rev. D 55 (1997) 4435 [Erratum ibid. D 56 (1997) 1822] [hep-ph/9610468] [INSPIRE].
  49. [49]
    Fermi-LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].
  50. [50]
    S. Burdin et al., Non-collider searches for stable massive particles, Phys. Rept. 582 (2015) 1 [arXiv:1410.1374] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Chuzhoy and E.W. Kolb, Reopening the window on charged dark matter, JCAP 07 (2009) 014 [arXiv:0809.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Langacker and G. Steigman, Requiem for an FCHAMP? Fractionally CHArged, Massive Particle, Phys. Rev. D 84 (2011) 065040 [arXiv:1107.3131] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M.L. Perl, E.R. Lee and D. Loomba, Searches for fractionally charged particles, Ann. Rev. Nucl. Part. Sci. 59 (2009) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, arXiv:1503.08749 [INSPIRE].
  56. [56]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.MathSciNetADSGoogle Scholar
  61. [61]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Lindley, Cosmological constraints on the lifetime of massive particles, Astrophys. J. 294 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M.H. Reno and D. Seckel, Primordial nucleosynthesis: the effects of injecting hadrons, Phys. Rev. D 37 (1988) 3441 [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Is the universe closed by baryons? Nucleosynthesis with a late decaying massive particle, Astrophys. J. 330 (1988) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R.J. Scherrer and M.S. Turner, Primordial nucleosynthesis with decaying particles. 1. Entropy producing decays. 2. Inert decays, Astrophys. J. 331 (1988) 19 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos and S. Sarkar, Astrophysical constraints on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Pospelov, Particle physics catalysis of thermal Big Bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    K. Kohri and F. Takayama, Big bang nucleosynthesis with long lived charged massive particles, Phys. Rev. D 76 (2007) 063507 [hep-ph/0605243] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Kaplinghat and A. Rajaraman, Big Bang nucleosynthesis with bound states of long-lived charged particles, Phys. Rev. D 74 (2006) 103004 [astro-ph/0606209] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C. Bird, K. Koopmans and M. Pospelov, Primordial Lithium abundance in catalyzed Big Bang nucleosynthesis, Phys. Rev. D 78 (2008) 083010 [hep-ph/0703096] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Jittoh et al., Possible solution to the Li-7 problem by the long lived stau, Phys. Rev. D 76 (2007) 125023 [arXiv:0704.2914] [INSPIRE].ADSGoogle Scholar
  76. [76]
    K. Jedamzik, The cosmic Li-6 and Li-7 problems and BBN with long-lived charged massive particles, Phys. Rev. D 77 (2008) 063524 [arXiv:0707.2070] [INSPIRE].ADSGoogle Scholar
  77. [77]
    T. Jittoh et al., Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario, Phys. Rev. D 78 (2008) 055007 [arXiv:0805.3389] [INSPIRE].ADSGoogle Scholar
  78. [78]
    D. Cumberbatch et al., Solving the cosmic lithium problems with primordial late-decaying particles, Phys. Rev. D 76 (2007) 123005 [arXiv:0708.0095] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida and G.J. Mathews, A simultaneous solution to the 6 Li and 7 Li Big Bang nucleosynthesis problems from a long-lived negatively-charged leptonic particle, Phys. Rev. D 76 (2007) 121302 [arXiv:0711.3854] [INSPIRE].ADSGoogle Scholar
  80. [80]
    B.D. Fields, The primordial lithium problem, Ann. Rev. Nucl. Part. Sci. 61 (2011) 47 [arXiv:1203.3551] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G. Steigman, Primordial nucleosynthesis in the precision cosmology era, Ann. Rev. Nucl. Part. Sci. 57 (2007) 463 [arXiv:0712.1100].ADSCrossRefGoogle Scholar
  82. [82]
    R.E. Lopez and M.S. Turner, An accurate calculation of the Big Bang prediction for the abundance of primordial helium, Phys. Rev. D 59 (1999) 103502 [astro-ph/9807279] [INSPIRE].
  83. [83]
    V.F. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073].CrossRefGoogle Scholar
  84. [84]
    S. Weinberg, Cosmology, Oxford University Press, Oxford U.K. (2008).Google Scholar
  85. [85]
    M. Pospelov and J. Pradler, Big Bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054].ADSCrossRefGoogle Scholar
  86. [86]
    C. Englert et al., Precision measurements of higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    I. Picek and B. Radovcic, Enhancement of hγγ by seesaw-motivated exotic scalars, Phys. Lett. B 719 (2013) 404 [arXiv:1210.6449] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].
  90. [90]
    CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].
  91. [91]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  92. [92]
    B. Ren, K. Tsumura and X.-G. He, A Higgs quadruplet for type III seesaw and implications for μeγ and μ-e conversion, Phys. Rev. D 84 (2011) 073004 [arXiv:1107.5879] [INSPIRE].ADSGoogle Scholar
  93. [93]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  94. [94]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].ADSGoogle Scholar
  95. [95]
    ALEPH collaboration, R. Barate et al., Search for pair production of longlived heavy charged particles in e + e annihilation, Phys. Lett. B 405 (1997) 379 [hep-ex/9706013] [INSPIRE].
  96. [96]
    DELPHI collaboration, P. Abreu et al., Search for heavy stable and longlived particles in e+ecollisions at \( \sqrt{s}=189 \) GeV, Phys. Lett. B 478 (2000) 65 [hep-ex/0103038] [INSPIRE].
  97. [97]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].
  98. [98]
    OPAL collaboration, G. Abbiendi et al., Search for stable and longlived massive charged particles in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [INSPIRE].
  99. [99]
    H1 collaboration, A. Aktas et al., Measurement of anti-deuteron photoproduction and a search for heavy stable charged particles at HERA, Eur. Phys. J. C 36 (2004) 413 [hep-ex/0403056] [INSPIRE].
  100. [100]
    D0 collaboration, V.M. Abazov et al., Search for long-lived charged massive particles with the D0 detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [INSPIRE].
  101. [101]
    CDF collaboration, T. Aaltonen et al., Search for long-lived massive charged particles in 1.96 TeV \( \overline{p}p \) collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [INSPIRE].
  102. [102]
    D0 collaboration, V.M. Abazov et al., Search for charged massive long-lived particles at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 87 (2013) 052011 [arXiv:1211.2466] [INSPIRE].
  103. [103]
    CMS collaboration, Search for Heavy stable charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC, Phys. Lett. B 698 (2011) 353 [arXiv:1102.0459] [INSPIRE].
  105. [105]
    ATLAS collaboration, Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].
  106. [106]
    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].
  107. [107]
    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].
  108. [108]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  109. [109]
    CMS collaboration, Reinterpreting the results of the search for long-lived charged particles in the pMSSM and other BSM scenarios, CMS-PAS-EXO-13-006 (2013).
  110. [110]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    MoEDAL collaboration, J. Pinfold et al., Technical design report of the MoEDAL experiment, CERN-LHCC-2009-006 (2009).
  112. [112]
    MoEDAL collaboration, B. Acharya et al., The physics programme of the MoEDAL experiment at the LHC, Int. J. Mod. Phys. A 29 (2014) 1430050 [arXiv:1405.7662] [INSPIRE].
  113. [113]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  114. [114]
    N. Zhou, D. Berge and D. Whiteson, Mono-everything: combined limits on dark matter production at colliders from multiple final states, Phys. Rev. D 87 (2013) 095013 [arXiv:1302.3619] [INSPIRE].ADSGoogle Scholar
  115. [115]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
  116. [116]
    Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  117. [117]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  118. [118]
    ALEPH collaboration, A. Heister et al., Search for charginos nearly mass degenerate with the lightest neutralino in e + e collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].
  119. [119]
    DELPHI collaboration, P. Abreu et al., Update of the search for charginos nearly mass-degenerate with the lightest neutralino, Phys. Lett. B 485 (2000) 95 [hep-ex/0103035] [INSPIRE].
  120. [120]
    L3 collaboration, M. Acciarri et al., Search for charginos with a small mass difference with the lightest supersymmetric particle at \( \sqrt{S}=189 \) GeV, Phys. Lett. B 482 (2000) 31 [hep-ex/0002043] [INSPIRE].
  121. [121]
    OPAL collaboration, G. Abbiendi et al., Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].
  122. [122]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  123. [123]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt{s}=192 \) GeV to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].
  124. [124]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].
  125. [125]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour and B.R. Webber, Implementation of supersymmetric processes in the HERWIG event generator, JHEP 04 (2002) 028 [hep-ph/0204123] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
  128. [128]
    A. De Rujula, H. Georgi and S.L. Glashow, Hadron masses in a gauge theory, Phys. Rev. D 12 (1975) 147 [INSPIRE].ADSGoogle Scholar
  129. [129]
    A.C. Kraan, Interactions of heavy stable hadronizing particles, Eur. Phys. J. C 37 (2004) 91 [hep-ex/0404001] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A. Mafi and S. Raby, An analysis of a heavy gluino LSP at CDF: the heavy gluino window, Phys. Rev. D 62 (2000) 035003 [hep-ph/9912436] [INSPIRE].ADSGoogle Scholar
  132. [132]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].
  133. [133]
    R. Mackeprang and A. Rizzi, Interactions of coloured heavy stable particles in matter, Eur. Phys. J. C 50 (2007) 353 [hep-ph/0612161] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    R. Mackeprang and D. Milstead, An updated description of heavy-hadron interactions in GEANT-4, Eur. Phys. J. C 66 (2010) 493 [arXiv:0908.1868] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  136. [136]
    CMS collaboration, Search for decays of stopped long-lived particles produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 151 [arXiv:1501.05603] [INSPIRE].
  137. [137]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
  138. [138]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].ADSGoogle Scholar
  139. [139]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    K. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato et al., Letter of intent: the Hyper-Kamiokande experimentDetector design and physics potential, arXiv:1109.3262 [INSPIRE].
  142. [142]
    A. Garfagnini, Neutrinoless double beta decay experiments, arXiv:1408.2455 [INSPIRE].
  143. [143]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the standard model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Luca Di Luzio
    • 1
  • Ramona Gröber
    • 2
  • Jernej F. Kamenik
    • 3
    • 4
    • 5
  • Marco Nardecchia
    • 6
  1. 1.Dipartimento di Fisica, Università di Genova and INFN — Sezione di GenovaGenovaItaly
  2. 2.INFN — Sezione di Roma TreRomaItaly
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  5. 5.CERN TH-PH DivisionMeyrinSwitzerland
  6. 6.DAMTPUniversity of CambridgeCambridgeU.K.

Personalised recommendations