Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection

Abstract

We have explored Natural Supersymmetry (NSUSY) scenarios with low values of the μ parameter which are characterised by higgsino-like Dark Matter (DM) and compressed spectra for the lightest MSSM particles, χ 01 , χ 02 and χ ±1 . This scenario could be probed via monojet signatures, but as the signal-to-background ratio (S/B) is low we demonstrate that the 8 TeV LHC cannot obtain limits on the DM mass beyond those of LEP2. On the other hand, we have found, for the 13 TeV run of the LHC, that by optimising kinematical cuts we can bring the S/B ratio up to the 5(3)% level which would allow the exclusion of the DM mass up to 200(250) GeV respectively, significantly extending LEP2 limits. Moreover, we have found that LUX/XENON1T and LHC do play very complementary roles in exploring the parameter space of NSUSY, as the LHC has the capability to access regions where DM is quasi-degenerate with other higgsinos, which are challenging for direct detection experiments.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    G.W. Anderson and D.J. Castano, Naturalness and superpartner masses or when to give up on weak scale supersymmetry, Phys. Rev. D 52 (1995) 1693 [hep-ph/9412322] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Liu and P. Nath, Higgs boson mass, proton decay, naturalness and constraints of the LHC and Planck data, Phys. Rev. D 87 (2013) 095012 [arXiv:1303.7472] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    P.H. Chankowski, J.R. Ellis and S. Pokorski, The fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    G.L. Kane and S.F. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Bastero-Gil, G.L. Kane and S.F. King, Fine tuning constraints on supergravity models, Phys. Lett. B 474 (2000) 103 [hep-ph/9910506] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J.L. Feng and D. Sanford, A natural 125 GeV Higgs Boson in the MSSM from focus point supersymmetry with A-terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    J.L. Feng, Naturalness and the status of supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    Y. Nomura and B. Tweedie, The supersymmetric fine-tuning problem and TeV-scale exotic scalars, Phys. Rev. D 72 (2005) 015006 [hep-ph/0504246] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    Y. Nomura, D. Poland and B. Tweedie, Minimally fine-tuned supersymmetric standard models with intermediate-scale supersymmetry breaking, Nucl. Phys. B 745 (2006) 29 [hep-ph/0509243] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    S. Cassel, D.M. Ghilencea and G.G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. [23]

    S. Cassel, D.M. Ghilencea and G.G. Ross, Testing SUSY at the LHC: electroweak and dark matter fine tuning at two-loop order, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  24. [24]

    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013) 057 [arXiv:1206.5303] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    R.T. D’Agnolo, E. Kuflik and M. Zanetti, Fitting the Higgs to natural SUSY, JHEP 03 (2013) 043 [arXiv:1212.1165] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    H. Baer et al., Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    H. Baer, V. Barger and M. Padeffke-Kirkland, Electroweak versus high scale finetuning in the 19-parameter SUGRA model, Phys. Rev. D 88 (2013) 055026 [arXiv:1304.6732] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    H. Baer, V. Barger, M. Padeffke-Kirkland and X. Tata, Naturalness implies intra-generational degeneracy for decoupled squarks and sleptons, Phys. Rev. D 89 (2014) 037701 [arXiv:1311.4587] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    H. Baer, V. Barger and D. Mickelson, Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak naturalness, Phys. Lett. B 726 (2013) 330 [arXiv:1303.3816] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019 [arXiv:1404.2277] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    J.E. Younkin and S.P. Martin, Non-universal gaugino masses, the supersymmetric little hierarchy problem and dark matter, Phys. Rev. D 85 (2012) 055028 [arXiv:1201.2989] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    S. Fichet, Quantified naturalness from Bayesian statistics, Phys. Rev. D 86 (2012) 125029 [arXiv:1204.4940] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    G.D. Kribs, A. Martin and A. Menon, Natural supersymmetry and implications for Higgs physics, Phys. Rev. D 88 (2013) 035025 [arXiv:1305.1313] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    E. Hardy, Is natural SUSY natural?, JHEP 10 (2013) 133 [arXiv:1306.1534] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    K. Kowalska and E.M. Sessolo, Natural MSSM after the LHC 8 TeV run, Phys. Rev. D 88 (2013) 075001 [arXiv:1307.5790] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    K. Kowalska, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Low fine tuning in the MSSM with higgsino dark matter and unification constraints, JHEP 04 (2014) 166 [arXiv:1402.1328] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    C. Han, K.-i. Hikasa, L. Wu, J.M. Yang and Y. Zhang, Current experimental bounds on stop mass in natural SUSY, JHEP 10 (2013) 216 [arXiv:1308.5307] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    E. Dudas, G. von Gersdorff, S. Pokorski and R. Ziegler, Linking natural supersymmetry to flavour physics, JHEP 01 (2014) 117 [arXiv:1308.1090] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The last vestiges of naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    S.P. Martin, Nonuniversal gaugino masses and seminatural supersymmetry in view of the Higgs boson discovery, Phys. Rev. D 89 (2014) 035011 [arXiv:1312.0582] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck Data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    N.E. Bomark, A. Kvellestad, S. Lola, P. Osland and A.R. Raklev, Long lived charginos in Natural SUSY?, JHEP 05 (2014) 007 [arXiv:1310.2788] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    J. Fan and M. Reece, A new look at Higgs constraints on stops, JHEP 06 (2014) 031 [arXiv:1401.7671] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The price of being SM-like in SUSY, JHEP 04 (2014) 180 [arXiv:1401.8291] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A. Delgado, M. Quirós and C. Wagner, General focus point in the MSSM, JHEP 04 (2014) 093 [arXiv:1402.1735] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    A. Delgado, M. Quirós and C. Wagner, Focus point in the light stop scenario, Phys. Rev. D 90 (2014) 035011 [arXiv:1406.2027] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    A. Fowlie, CMSSM, naturalness and thefine-tuning priceof the very Large Hadron Collider, Phys. Rev. D 90 (2014) 015010 [arXiv:1403.3407] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    A. Mustafayev and X. Tata, Supersymmetry, naturalness and light higgsinos, Indian J. Phys. 88 (2014) 991 [arXiv:1404.1386] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    I. Antoniadis, E.M. Babalic and D.M. Ghilencea, Naturalness in low-scale SUSY models andnon-linearMSSM, Eur. Phys. J. C 74 (2014) 3050 [arXiv:1405.4314] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    J.A. Casas, J.M. Moreno, S. Robles, K. Rolbiecki and B. Zaldivar, What is a natural SUSY scenario?, arXiv:1407.6966 [INSPIRE].

  57. [57]

    H. Baer, V. Barger, D. Mickelson, A. Mustafayev and X. Tata, Physics at a higgsino factory, JHEP 06 (2014) 172 [arXiv:1404.7510] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    CMS collaboration, Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV, Phys. Lett. B 725 (2013) 243 [arXiv:1305.2390] [INSPIRE].

  59. [59]

    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].

  60. [60]

    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].

  61. [61]

    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].

  62. [62]

    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].

  63. [63]

    J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    H. Baer, V. Barger and D. Mickelson, How conventional measures overestimate electroweak fine-tuning in supersymmetric theory, Phys. Rev. D 88 (2013) 095013 [arXiv:1309.2984] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

  66. [66]

    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

  67. [67]

    J.L. Feng, K.T. Matchev and F. Wilczek, Prospects for indirect detection of neutralino dark matter, Phys. Rev. D 63 (2001) 045024 [astro-ph/0008115] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    A. Crivellin et al., Light stops, blind spots, and isospin violation in the MSSM, arXiv:1503.03478 [INSPIRE].

  70. [70]

    H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, Indirect, direct and collider detection of neutralino dark matter, JCAP 08 (2004) 005 [hep-ph/0405210] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    D.S.M. Alves, E. Izaguirre and J.G. Wacker, Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC, JHEP 10 (2011) 012 [arXiv:1102.5338] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    C. Han et al., Probing light higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].

  78. [78]

    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).

  79. [79]

    ATLAS collaboration, Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC, ATL-PHYS-PUB-2014-007 (2014).

  80. [80]

    A. Belyaev, The interplay of the LHC and direct dark matter detection in unravelling natural supersymmetry at the focus point, presentation at the 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2014), July 21–26, Manchester, U.K. (2014).

  81. [81]

    C. Han, D. Kim, S. Munir and M. Park, Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC, JHEP 04 (2015) 132 [arXiv:1502.03734] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    A. Bartl, W. Majerotto and W. Porod, Large Higgs boson exchange contribution in three-body neutralino decays, Phys. Lett. B 465 (1999) 187 [hep-ph/9907377] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    A. Djouadi and Y. Mambrini, Three body decays of SUSY particles, Phys. Lett. B 493 (2000) 120 [hep-ph/0007174] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    A. De Simone, V. Sanz and H.P. Sato, Pseudo-Dirac dark matter leaves a trace, Phys. Rev. Lett. 105 (2010) 121802 [arXiv:1004.1567] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a μ term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  87. [87]

    K. Hsieh, Pseudo-Dirac bino dark matter, Phys. Rev. D 77 (2008) 015004 [arXiv:0708.3970] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark matter with dirac and Majorana gaugino masses, JCAP 08 (2009) 027 [arXiv:0905.1043] [INSPIRE].

    Article  Google Scholar 

  89. [89]

    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].

  90. [90]

    CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].

  91. [91]

    A. De Simone, J. Fan, V. Sanz and W. Skiba, Leptogenic supersymmetry, Phys. Rev. D 80 (2009) 035010 [arXiv:0903.5305] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].

  93. [93]

    Planck collaboration, P. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.0158.

  94. [94]

    R. Allahverdi, B. Dutta and K. Sinha, Non-thermal higgsino dark matter: cosmological motivations and implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  96. [96]

    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  97. [97]

    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  98. [98]

    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].

  99. [99]

    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

  100. [100]

    S. Arrenberg et al., Working group report: dark matter complementarity, arXiv:1310.8621 [INSPIRE].

  101. [101]

    CTA Consortium collaboration, M. Actis et al., Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Exper. Astron. 32 (2011) 193 [arXiv:1008.3703] [INSPIRE].

  102. [102]

    CTA collaboration, M. Doro et al., Dark matter and fundamental physics with the Cherenkov Telescope Array, Astropart. Phys. 43 (2013) 189 [arXiv:1208.5356] [INSPIRE].

  103. [103]

    M. Cahill-Rowley et al., Complementarity of dark matter searches in the phenomenological MSSM, Phys. Rev. D 91 (2015) 055011 [arXiv:1405.6716] [INSPIRE].

    ADS  Google Scholar 

  104. [104]

    CMS Collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-048 (2012).

  105. [105]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  106. [106]

    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  108. [108]

    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  109. [109]

    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  111. [111]

    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  112. [112]

    G. Brooijmans et al., Les Houches 2013: physics at TeV colliders: new physics working group report, arXiv:1405.1617 [INSPIRE].

  113. [113]

    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1502.0151.

  114. [114]

    S. Bityukov and N. Krasnikov, On observability of signal over background, physics/9809037 [IFVE-98-48].

  115. [115]

    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].

    ADS  Article  Google Scholar 

  116. [116]

    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Belyaev.

Additional information

ArXiv ePrint: 1504.02472

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barducci, D., Belyaev, A., Bharucha, A.K.M. et al. Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection. J. High Energ. Phys. 2015, 66 (2015). https://doi.org/10.1007/JHEP07(2015)066

Download citation

Keywords

  • Supersymmetry Phenomenology
  • Monte Carlo Simulations