Lifting flat directions in lattice supersymmetry

Open Access
Regular Article - Theoretical Physics

Abstract

We present a procedure to improve the lattice definition of \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory. The lattice construction necessarily involves U(1) flat directions, and we show how these can be lifted without violating the exact lattice supersymmetry. The basic idea is to modify the equations of motion of an auxiliary field, which determine the moduli space of the system. Applied to numerical calculations, the resulting improved lattice action leads to dramatically reduced violations of supersymmetric Ward identities and much more rapid approach to the continuum limit.

Keywords

Lattice Gauge Field Theories Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP 09 (2005) 042 [hep-lat/0503039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089 [hep-th/0603046] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Catterall, From Twisted Supersymmetry to Orbifold Lattices, JHEP 01 (2008) 048 [arXiv:0712.2532] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P.H. Damgaard and S. Matsuura, Geometry of Orbifolded Supersymmetric Lattice Gauge Theories, Phys. Lett. B 661 (2008) 52 [arXiv:0801.2936] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, Perturbative renormalization of lattice N = 4 super Yang-Mills theory, JHEP 04 (2011) 074 [arXiv:1102.1725] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Catterall, P.H. Damgaard, T. Degrand, R. Galvez and D. Mehta, Phase Structure of Lattice N = 4 Super Yang-Mills, JHEP 11 (2012) 072 [arXiv:1209.5285] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Catterall, J. Giedt and A. Joseph, Twisted supersymmetries in lattice N = 4 super Yang-Mills theory, JHEP 10 (2013) 166 [arXiv:1306.3891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Catterall, D. Schaich, P.H. Damgaard, T. DeGrand and J. Giedt, N=4 Supersymmetry on a Space-Time Lattice, Phys. Rev. D 90 (2014) 065013 [arXiv:1405.0644] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Catterall and J. Giedt, Real space renormalization group for twisted lattice \( \mathcal{N}=4 \) super Yang-Mills, JHEP 11 (2014) 050 [arXiv:1408.7067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D. Schaich and T. DeGrand, Parallel software for lattice \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Comput. Phys. Commun. 190 (2015) 200 [arXiv:1410.6971] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    S. Catterall, J. Giedt, D. Schaich, P.H. Damgaard and T. DeGrand, Results from lattice simulations of N = 4 supersymmetric Yang-Mills, PoS(LATTICE2014)267 [arXiv:1411.0166] [INSPIRE].
  13. [13]
    T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, N = 4 Super Yang-Mills from the Plane Wave Matrix Model, Phys. Rev. D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Deconfinement phase transition in N = 4 super Yang-Mills theory on R × S3 from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 111601 [arXiv:0810.2884] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Testing a novel large-N reduction for N = 4 super Yang-Mills theory on R × S3, JHEP 09 (2009) 029 [arXiv:0907.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Hanada, S. Matsuura and F. Sugino, Two-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-Mills, Prog. Theor. Phys. 126 (2011) 597 [arXiv:1004.5513] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoS(LATTICE2011)244 [arXiv:1112.4274] [INSPIRE].
  18. [18]
    M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Direct test of the AdS/CFT correspondence by Monte Carlo studies of N = 4 super Yang-Mills theory, JHEP 11 (2013) 200 [arXiv:1308.3525] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsSyracuse UniversitySyracuseUnited States

Personalised recommendations