Skip to main content

Inclusive, prompt and non-prompt J/ψ production at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV

A preprint version of the article is available at arXiv.

Abstract

The transverse momentum (pT) dependence of the nuclear modification factor RAA and the centrality dependence of the average transverse momentum 〈pT〉 for inclusive J have been measured with ALICE for Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV in the e+e decay channel at mid-rapidity (|y| < 0.8). The 〈pT〉 is significantly smaller than the one observed for pp collisions at the same centre-of-mass energy. Consistently, an increase of RAA is observed towards low pT. These observations might be indicative of a sizable contribution of charm quark coalescence to the J production. Additionally, the fraction of non-prompt J from beauty hadron decays, fB, has been determined in the region 1.5 < pT < 10 GeV/c in three centrality intervals. No significant centrality dependence of fB is observed. Finally, the RAA of non-prompt J is discussed and compared with model predictions. The nuclear modification in the region 4.5 < pT < 10 GeV/c is found to be stronger than predicted by most models.

References

  1. [1]

    F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions, J. Phys. Conf. Ser. 46 (2006) 122 [hep-lat/0608003] [INSPIRE].

    Article  Google Scholar 

  2. [2]

    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

  3. [3]

    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. [4]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    T. Matsui and H. Satz, J/ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    NA50 collaboration, B. Alessandro et al., A new measurement of J/ψ suppression in Pb-Pb collisions at 158-GeV per nucleon, Eur. Phys. J. C 39 (2005) 335 [hep-ex/0412036] [INSPIRE].

  7. [7]

    NA60 collaboration, R. Arnaldi, J/ψ production in p-A and A-A collisions at fixed target experiments, Nucl. Phys. A 830 (2009) 345C-352C [arXiv:0907.5004] [INSPIRE].

  8. [8]

    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    PHENIX collaboration, A. Adare et al., J/ψ Production vs Centrality, Transverse Momentum and Rapidity in Au+Au Collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 98 (2007)232301 [nucl-ex/0611020] [INSPIRE].

  10. [10]

    PHENIX collaboration, A. Adare et al., J/ψ suppression at forward rapidity in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 84 (2011) 054912 [arXiv:1103.6269] [INSPIRE].

  11. [11]

    ALICE collaboration, J/ψ suppression at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 109 (2012) 072301 [arXiv:1202.1383] [INSPIRE].

  12. [12]

    ALICE collaboration, Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 734 (2014) 314 [arXiv:1311.0214] [INSPIRE].

  13. [13]

    CMS collaboration, Suppression of non-prompt J/ψ, prompt J/ψ and Y(1S) in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 05 (2012) 063 [arXiv:1201.5069] [INSPIRE].

  14. [14]

    P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R.L. Thews, M. Schroedter and J. Rafelski, Enhanced J/ψ production in deconfined quark matter, Phys. Rev. C 63 (2001) 054905 [hep-ph/0007323] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    M.I. Gorenstein, A.P. Kostyuk, H. Stoecker and W. Greiner, Statistical coalescence model with exact charm conservation, Phys. Lett. B 509 (2001) 277 [hep-ph/0010148] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B 571 (2003) 36 [nucl-th/0303036] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    X. Zhao and R. Rapp, Transverse Momentum Spectra of J/ψ in Heavy-Ion Collisions, Phys. Lett. B 664 (2008) 253 [arXiv:0712.2407] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    Y.-p. Liu, Z. Qu, N. Xu and P.-f. Zhuang, J/ψ Transverse Momentum Distribution in High Energy Nuclear Collisions at RHIC, Phys. Lett. B 678 (2009) 72 [arXiv:0901.2757] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    ALICE collaboration, J/ψ Elliptic Flow in Pb-Pb Collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 111 (2013) 162301 [arXiv:1303.5880] [INSPIRE].

  21. [21]

    M. Gyulassy and M. Plumer, Jet Quenching in Dense Matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M.H. Thoma and M. Gyulassy, Quark Damping and Energy Loss in the High Temperature QCD, Nucl. Phys. B 351 (1991) 491 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    E. Braaten and M.H. Thoma, Energy loss of a heavy fermion in a hot plasma, Phys. Rev. D 44 (1991) 1298 [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    E. Braaten and M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma, Phys. Rev. D 44 (1991) 2625 [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Heavy quark jet quenching with collisional plus radiative energy loss and path length fluctuations, Nucl. Phys. A 783 (2007) 493 [nucl-th/0701063] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    B.-W. Zhang, E. Wang and X.-N. Wang, Heavy quark energy loss in nuclear medium, Phys. Rev. Lett. 93 (2004) 072301 [nucl-th/0309040] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    R. Sharma, I. Vitev and B.-W. Zhang, Light-cone wave function approach to open heavy flavor dynamics in QCD matter, Phys. Rev. C 80 (2009) 054902 [arXiv:0904.0032] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    R. Sharma and I. Vitev, High transverse momentum quarkonium production and dissociation in heavy ion collisions, Phys. Rev. C 87 (2013) 044905 [arXiv:1203.0329] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Adil and I. Vitev, Collisional dissociation of heavy mesons in dense QCD matter, Phys. Lett. B 649 (2007) 139 [hep-ph/0611109] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    P. Faccioli, C. Lourenco, J. Seixas and H.K. Woehri, Study of ψand χ c decays as feed-down sources of J/ψ hadro-production, JHEP 10 (2008) 004 [arXiv:0809.2153] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    ATLAS collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Nucl. Phys. B 850 (2011) 387 [arXiv:1104.3038] [INSPIRE].

  36. [36]

    CMS collaboration, J/ψ and ψ(2S) production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2012) 011 [arXiv:1111.1557] [INSPIRE].

  37. [37]

    ALICE collaboration, Measurement of prompt J/ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 065 [arXiv:1205.5880] [INSPIRE].

  38. [38]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  39. [39]

    ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  40. [40]

    J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  42. [42]

    ALICE collaboration, Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 109 (2012)252302 [arXiv:1203.2436] [INSPIRE].

  43. [43]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  44. [44]

    ALICE collaboration, Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 704 (2011) 442 [arXiv:1105.0380] [INSPIRE].

  45. [45]

    ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  46. [46]

    ALICE collaboration, J/ψ polarization in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 082001 [arXiv:1111.1630] [INSPIRE].

  47. [47]

    CMS collaboration, Measurement of the prompt J/ψ and ψ(2S) polarizations in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 727 (2013) 381 [arXiv:1307.6070] [INSPIRE].

  48. [48]

    LHCb collaboration, Measurement of J/ψ polarization in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2631 [arXiv:1307.6379] [INSPIRE].

  49. [49]

    X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501 [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    F. Bossu et al., Phenomenological interpolation of the inclusive J/ψ cross section to proton-proton collisions at 2.76 TeV and 5.5 TeV, arXiv:1103.2394 [INSPIRE].

  51. [51]

    K.J. Eskola, V.J. Kolhinen and C.A. Salgado, The Scale dependent nuclear effects in parton distributions for practical applications, Eur. Phys. J. C 9 (1999) 61 [hep-ph/9807297] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    E. Barberio and Z. Was, PHOTOS: A Universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun. 79 (1994) 291 [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    R. Brun, F. Carminati and S. Giani, GEANT Detector Description and Simulation Tool, CERN-W5013, CERN-W-5013 (1994).

  55. [55]

    ALICE collaboration, Inclusive J/ψ production in pp collisions at \( \sqrt{s}=2.76 \) TeV, Phys. Lett. B 718 (2012) 295 [arXiv:1203.3641] [INSPIRE].

  56. [56]

    PHENIX collaboration, A. Adare et al., J/ψ production versus transverse momentum and rapidity in p+p collisions at \( \sqrt{s}=200 \)-GeV, Phys. Rev. Lett. 98 (2007) 232002 [hep-ex/0611020] [INSPIRE].

  57. [57]

    CDF collaboration, Measurement of the J/ψ meson and bhadron production cross sections in \( p\overline{p} \) collisions at \( \sqrt{s}=1960 \) GeV, Phys. Rev. D 71 (2005) 032001 [hep-ex/0412071] [INSPIRE].

  58. [58]

    Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.

  59. [59]

    W.M. Alberico et al., Heavy-flavour spectra in high energy nucleus-nucleus collisions, Eur. Phys. J. C 71 (2011) 1666 [arXiv:1101.6008] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    W.M. Alberico, et al., Heavy flavors in AA collisions: production, transport and final spectra, Eur. Phys. J. C 73 (2013) 2481 [arXiv:1305.7421] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Open Heavy Flavor in Pb+Pb Collisions at \( \sqrt{s}=2.76 \) TeV within a Transport Model, Phys. Lett. B 717 (2012) 430 [arXiv:1205.4945] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    BaBar collaboration, B. Aubert et al., Study of inclusive production of charmonium mesons in B decay, Phys. Rev. D 67 (2003) 032002 [hep-ex/0207097] [INSPIRE].

  63. [63]

    LHCb collaboration, Measurement of J/ψ production in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 71 (2011) 1645 [arXiv:1103.0423] [INSPIRE].

  64. [64]

    CDF collaboration, Polarization of J/ψ and ψ2S mesons produced in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \)-TeV, Phys. Rev. Lett. 99 (2007) 132001 [arXiv:0704.0638] [INSPIRE].

  65. [65]

    ALICE collaboration, Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 09 (2012) 112 [arXiv:1203.2160] [INSPIRE].

  66. [66]

    ALICE collaboration, Technical Design Report for the Upgrade of the ALICE Inner Tracking System, J. Phys. G 41 (2014) 087002 [INSPIRE].

  67. [67]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  68. [68]

    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    ALICE collaboration, K. Koch, π0 and η measurement with photon conversions in ALICE in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Nucl. Phys. A 855 (2011) 281 [arXiv:1103.2217] [INSPIRE].

  70. [70]

    CMS collaboration, Prompt and non-prompt J/ψ production in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 71 (2011) 1575 [arXiv:1011.4193] [INSPIRE].

  71. [71]

    M. Cacciari et al., Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    PHENIX collaboration, A. Adare et al., J/ψ Production in \( \sqrt{s_{NN}}=200 \) GeV Cu+Cu Collisions, Phys. Rev. Lett. 101 (2008) 122301 [arXiv:0801.0220] [INSPIRE].

  73. [73]

    NA50 collaboration, M.C. Abreu et al., Transverse momentum distributions of J/ψ, ψ, Drell-Yan and continuum dimuons produced in Pb Pb interactions at the SPS, Phys. Lett. B 499 (2001)85 [INSPIRE].

  74. [74]

    K. Zhou, N. Xu, Z. Xu and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 054911 [arXiv:1401.5845] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    X. Zhao and R. Rapp, Charmonium in Medium: From Correlators to Experiment, Phys. Rev. C 82 (2010) 064905 [arXiv:1008.5328] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    X. Zhao and R. Rapp, Medium Modifications and Production of Charmonia at LHC, Nucl. Phys. A 859 (2011) 114 [arXiv:1102.2194] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    K. Zhou, N. Xu and P. Zhuang, Quarkonium Production and Medium Effects in High Energy Nuclear Collisions, arXiv:1309.7520 [INSPIRE].

  78. [78]

    K. Tuchin, Forward hadron production in high energy pA collisions: From RHIC to LHC, Nucl. Phys. A 798 (2008) 61 [arXiv:0705.2193] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    ALICE collaboration, Differential studies of J/ψ and ψ(2S) production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, arXiv:1506.08804.

  80. [80]

    M. He, R.J. Fries and R. Rapp, Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach, Phys. Lett. B 735 (2014) 445 [arXiv:1401.3817] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    M. Djordjevic and M. Djordjevic, LHC jet suppression of light and heavy flavor observables, Phys. Lett. B 734 (2014) 286 [arXiv:1307.4098] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Elastic, inelastic and path length fluctuations in jet tomography, Nucl. Phys. A 784 (2007) 426 [nucl-th/0512076] [INSPIRE].

  83. [83]

    J. Aichelin, P.B. Gossiaux and T. Gousset, Gluon radiation by heavy quarks at intermediate energies, Phys. Rev. D 89 (2014) 074018 [arXiv:1307.5270] [INSPIRE].

    ADS  Google Scholar 

  84. [84]

    P.B. Gossiaux et al., Gluon radiation by heavy quarks at intermediate energies and consequences for the mass hierarchy of energy loss, Nucl. Phys. A 931 (2014) 581 [arXiv:1409.0900] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    W.A. Horowitz and M. Gyulassy, Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?, Phys. Lett. B 666 (2008) 320 [arXiv:0706.2336] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  87. [87]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors