Advertisement

Rotating Hayward’s regular black hole as particle accelerator

  • Muhammed Amir
  • Sushant G. Ghosh
Open Access
Regular Article - Theoretical Physics

Abstract

Recently, Bañados, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy (ECM) when the collision takes place near the horizon. The rotating Hayward’s regular black hole, apart from Mass (M) and angular momentum (a), has a new parameter g (g > 0 is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each g, with M = 1, there exist critical a E and r H E , which corresponds to a regular extremal black hole with degenerate horizons, and a E decreases whereas r H E increases with increase in g. While a < a E describe a regular non-extremal black hole with outer and inner horizons. We apply the BSW process to the rotating Hayward’s regular black hole, for different g, and demonstrate numerically that the ECM diverges in the vicinity of the horizon for the extremal cases thereby suggesting that a rotating regular black hole can also act as a particle accelerator and thus in turn provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound for the ECM, which increases with the deviation parameter g.

Keywords

Black Holes Classical Theories of Gravity Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Bañados, J. Silk and S.M. West, Kerr black holes as particle accelerators to arbitrarily high energy, Phys. Rev. Lett. 103 (2009) 111102 [arXiv:0909.0169] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius and U. Sperhake, Comment onKerr black holes as particle accelerators to arbitrarily high energy’, Phys. Rev. Lett. 103 (2009) 239001 [arXiv:0911.2243] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Bañados, B. Hassanain, J. Silk and S.M. West, Emergent flux from particle collisions near a Kerr black hole, Phys. Rev. D 83 (2011) 023004 [arXiv:1010.2724] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K.S. Thorne, Disk accretion onto a black hole. II. Evolution of the hole, Astrophys. J. 191 (1974) 507 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Jacobson and T.P. Sotiriou, Spinning black holes as particle accelerators, Phys. Rev. Lett. 104 (2010) 021101 [arXiv:0911.3363] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O.B. Zaslavskii, Acceleration of particles by nonrotating charged black holes, JETP Lett. 92 (2010) 571 [arXiv:1007.4598] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.-W. Wei, Y.-X. Liu, H.-T. Li and F.-W. Chen, Particle collisions on stringy black hole background, JHEP 12 (2010) 066 [arXiv:1007.4333] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    I. Hussain, Collision energy in the center-of-mass frame for rotating and accelerating black holes, Mod. Phys. Lett. A 27 (2012) 1250017 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    T. Harada and M. Kimura, Black holes as particle accelerators: a brief review, Class. Quant. Grav. 31 (2014) 243001 [arXiv:1409.7502] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    K. Lake, Particle accelerators inside spinning black holes, Phys. Rev. Lett. 104 (2010) 211102 [arXiv:1001.5463] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.-W. Wei, Y.-X. Liu, H. Guo and C.-E. Fu, Charged spinning black holes as particle accelerators, Phys. Rev. D 82 (2010) 103005 [arXiv:1006.1056] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Liu, S. Chen, C. Ding and J. Jing, Particle acceleration on the background of the Kerr-Taub-NUT spacetime, Phys. Lett. B 701 (2011) 285 [arXiv:1012.5126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P.-J. Mao, L.-Y. Jia, J.-R. Ren and R. Li, Acceleration of particles in Einstein-Maxwell-dilaton black hole, arXiv:1008.2660 [INSPIRE].
  15. [15]
    Y. Zhu, S.-F. Wu, Y.-X. Liu and Y. Jiang, General stationary charged black holes as charged particle accelerators, Phys. Rev. D 84 (2011) 043006 [arXiv:1103.3848] [INSPIRE].ADSGoogle Scholar
  16. [16]
    O.B. Zaslavskii, Acceleration of particles by black holes as a result of deceleration: ultimate manifestation of kinematic nature of BSW effect, Phys. Lett. B 712 (2012) 161 [arXiv:1202.0565] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O.B. Zaslavskii, Horizon bifurcation surface as particle accelerator, Int. J. Mod. Phys. D 22 (2013) 1350044 [arXiv:1203.5291] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O.B. Zaslavskii, Acceleration of particles by black holes: general explanation, Class. Quant. Grav. 28 (2011) 105010 [arXiv:1011.0167] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    A.A. Grib and Y.V. Pavlov, On particles collisions near rotating black holes, Grav. Cosmol. 17 (2011) 42 [arXiv:1010.2052] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    A.A. Grib, Y.V. Pavlov and O.F. Piattella, On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons, Grav. Cosmol. 18 (2012) 70 [arXiv:1203.4952] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    T. Harada and M. Kimura, Collision of two general geodesic particles around a Kerr black hole, Phys. Rev. D 83 (2011) 084041 [arXiv:1102.3316] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Liu, S. Chen and J. Jing, Collision of two general geodesic particles around a Kerr-Newman black hole, Chin. Phys. Lett. 30 (2013) 100401 [arXiv:1104.3225] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Patil and P.S. Joshi, Naked singularities as particle accelerators, Phys. Rev. D 82 (2010) 104049 [arXiv:1011.5550] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Patil, P.S. Joshi and D. Malafarina, Naked singularities as particle accelerators. II, Phys. Rev. D 83 (2011) 064007 [arXiv:1102.2030] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Patil and P.S. Joshi, Kerr naked singularities as particle accelerators, Class. Quant. Grav. 28 (2011) 235012 [arXiv:1103.1082] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Patil, P.S. Joshi, M. Kimura and K.-i. Nakao, Acceleration of particles and shells by Reissner-Nordström naked singularities, Phys. Rev. D 86 (2012) 084023 [arXiv:1108.0288] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P.S. Joshi, Gravitational collapse: the story so far, Pramana 55 (2000) 529 [gr-qc/0006101] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett. 96 (2006) 031103 [gr-qc/0506126] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proceedings of the International Conference GR5, Tiflis U.S.S.R. (1968).Google Scholar
  30. [30]
    C. Bambi and L. Modesto, Rotating regular black holes, Phys. Lett. B 721 (2013) 329 [arXiv:1302.6075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. Toshmatov, B. Ahmedov, A. Abdujabbarov and Z. Stuchlik, Rotating regular black hole solution, Phys. Rev. D 89 (2014) 104017 [arXiv:1404.6443] [INSPIRE].ADSMATHGoogle Scholar
  32. [32]
    C. Bambi, Testing the Kerr black hole hypothesis, Mod. Phys. Lett. A 26 (2011) 2453 [arXiv:1109.4256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Bambi, Testing the space-time geometry around black hole candidates with the available radio and X-ray data, Astron. Rev. 8 (2013) 4 [arXiv:1301.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.G. Ghosh, P. Sheoran and M. Amir, Rotating Ayón-Beato-García black hole as a particle accelerator, Phys. Rev. D 90 (2014) 103006 [arXiv:1410.5588] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Pradhan, Regular black holes as particle accelerators, arXiv:1402.2748 [INSPIRE].
  36. [36]
    J.M. Bardeen, W.H. Press and S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction and scalar synchrotron radiation, Astrophys. J. 178 (1972) 347 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations