Asymptotic symmetries of Yang-Mills theory

  • Andrew StromingerEmail author
Open Access


Asymptotic symmetries at future null infinity (\( \mathrm{\mathcal{I}} \) +) of Minkowski space for electrodynamics with massless charged fields, as well as nonabelian gauge theories with gauge group G, are considered at the semiclassical level. The possibility of charge/color flux through \( \mathrm{\mathcal{I}} \) + suggests the symmetry group is infinite-dimensional. It is conjectured that the symmetries include a G Kac-Moody symmetry whose generators are “large” gauge transformations which approach locally holomorphic functions on the conformal two-sphere at \( \mathrm{\mathcal{I}} \) + and are invariant under null translations. The Kac-Moody currents are constructed from the gauge field at the future boundary of \( \mathrm{\mathcal{I}} \) +. The current Ward identities include Weinberg’s soft photon theorem and its colored extension.


Scattering Amplitudes Gauge Symmetry Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].
  5. [5]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Banks, A critique of pure string theory: Heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].
  7. [7]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Strominger, in progress.Google Scholar
  9. [9]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    A.P. Balachandran and S. Vaidya, Spontaneous Lorentz violation in gauge theories, Eur. Phys. J. Plus 128 (2013) 118 [arXiv:1302.3406] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    J. Maldacena and A. Zhiboedov, Notes on soft factors, unpublished (2012).Google Scholar
  12. [12]
    J. Maldacena and A. Zhiboedov, private communication.Google Scholar
  13. [13]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  14. [14]
    E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963) 66 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.D. Bjorken and S.D. Drell, Relativistic quantum fields, Mcgraw-Hill College, U.S.A. (1965).zbMATHGoogle Scholar
  17. [17]
    D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A.K.H. Bengtsson, L. Brink and S.-S. Kim, Counterterms in gravity in the light-front formulation and a D = 2 conformal-like symmetry in gravity, JHEP 03 (2013) 118 [arXiv:1212.2776] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeU.S.A.

Personalised recommendations