Advertisement

One-loop γγ → W L + W L and γγZ L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar

  • R. L. Delgado
  • A. Dobado
  • M. J. Herrero
  • J. J. Sanz-Cillero
Open Access
Article

Abstract

In this work we study the γγ → W L + W L and γγZ L Z L scattering processes within the effective chiral Lagrangian approach, including a light Higgs-like scalar as a dynamical field together with the would-be-Goldstone bosons w ± and z associated to the electroweak symmetry breaking. This approach is inspired by the possibility that the Higgs-like boson be a composite particle behaving as another Goldstone boson, and assumes the existence of a mass gap between m h , m W , m Z and the potential new emergent resonances, setting an intermediate energy region (above m h,W,Z and below the resonance masses) where the use of these effective chiral Lagrangians are the most appropriate tools to compute the relevant observables. We analyse in detail the proper chiral counting rules for the present case of photon-photon scattering and provide the computation of the one-loop γγ → W L + W L and γγZ L Z L scattering amplitudes within this Effective Chiral Lagrangian approach and the Equivalence Theorem, including a discussion on the involved renormalization procedure. We also propose here a joint analysis of our results for the twophoton scattering amplitudes together with other photonic processes and electroweak (EW) precision observables for a future comparison with data. This could help to disentangle the nature of the light Higgs-like particle.

Keywords

Higgs Physics Beyond Standard Model Chiral Lagrangians 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS Collaboration, Constraints on the Higgs boson width from off-shell production and decay to ZZ to llll and llvv, CMS-PAS-HIG-14-002.
  6. [6]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Barducci et al., The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC, JHEP 09 (2013) 047 [arXiv:1302.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].
  13. [13]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].ADSGoogle Scholar
  19. [19]
    A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    O. Cheyette and M.K. Gaillard, The Effective One Loop Action in the Strongly Interacting Standard Electroweak Theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron-Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Dobado, M.J. Herrero and T.N. Truong, Study of the Strongly Interacting Higgs Sector, Phys. Lett. B 235 (1990) 129 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Dobado, M.J. Herrero and J. Terron, The Role of Chiral Lagrangians in Strongly Interacting W(l) W(l) Signals at pp Supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].Google Scholar
  26. [26]
    A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Herrero and E. Ruiz-Morales, Study of γγ → W L+ W L and γγZ L Z L reactions with chiral Lagrangians, Phys. Lett. B 296 (1992) 397 [hep-ph/9208220] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M.J. Herrero and E. Ruiz Morales, The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.J. Herrero and E. Ruiz Morales, Nondecoupling effects of the SM Higgs boson to one loop, Nucl. Phys. B 437 (1995) 319 [hep-ph/9411207] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  36. [36]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to W L W L scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, arXiv:1403.7386 [INSPIRE].
  42. [42]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  50. [50]
    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  52. [52]
    G.J. Gounaris, R. Kogerler and H. Neufeld, Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners, Phys. Rev. D 34 (1986) 3257 [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Dobado and J.R. Pelaez, On the equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].
  54. [54]
    A. Dobado and J.R. Pelaez, The equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].
  55. [55]
    C. Grosse-Knetter and I. Kuss, The equivalence theorem and effective Lagrangians, Z. Phys. C 66 (1995) 95 [hep-ph/9403291] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    H.-J. He, Y.-P. Kuang and X.-y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism, Phys. Lett. B 329 (1994) 278 [hep-ph/9403283] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys. B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Dobado, A. Gómez-Nicola, A.L. Maroto and J.R. Peláez, Effective Lagrangians for the Standard Model, Springer Verlag, (1997).Google Scholar
  59. [59]
    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [arXiv:1307.5017] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Buchalla, O. Catà and C. Krause, On the Power Counting in Effective Field Theories, Phys. Lett. B 731 (2014) 80 [arXiv:1312.5624] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Hirn and J. Stern, Lepton-number violation and right-handed neutrinos in Higgs-less effective theories, Phys. Rev. D 73 (2006) 056001 [hep-ph/0504277] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Dobado and J. Morales, A Note on the γγπ 0 π 0 reaction in the 1/N expansion of χ(PT), Phys. Lett. B 365 (1996) 264 [hep-ph/9511244] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Dobado and J. Morales, Pion mass effects in the large-N limit of chi(PT), Phys. Rev. D 52 (1995) 2878 [hep-ph/9407321] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.F. Donoghue, B.R. Holstein and Y.C. Lin, The reaction γγπ 0 π 0 and Chiral Loops, Phys. Rev. D 37 (1988) 2423 [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Bijnens, S. Dawson and G. Valencia, γγπ 0 π 0 and K Lπ 0 γγ in the chiral quark model, Phys. Rev. D 44 (1991) 3555 [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions, Nucl. Phys. B 296 (1988) 557 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    U. Burgi, Charged pion pair production and pion polarizabilities to two loops, Nucl. Phys. B 479 (1996) 392 [hep-ph/9602429] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    U. Burgi, Charged pion polarizabilities to two loops, Phys. Lett. B 377 (1996) 147 [hep-ph/9602421] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    L. Ametller and P. Talavera, The lowest resonance in QCD from low-energy data, arXiv:1402.2649 [INSPIRE].
  75. [75]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    N. Watanabe, Y. Kurihara, K. Sasaki and T. Uematsu, Higgs Production in Two-Photon Process and Transition Form Factor, Phys. Lett. B 728 (2014) 202 [arXiv:1311.1601] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via h → Vdecays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082 [arXiv:1307.4051] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • R. L. Delgado
    • 1
  • A. Dobado
    • 1
  • M. J. Herrero
    • 2
  • J. J. Sanz-Cillero
    • 2
  1. 1.Departamento de Física Teórica I, UCMUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations