Composite Higgsino

Open Access
Article
  • 125 Downloads

Abstract

Several supersymmetric models in which there is a (partially) composite Higgs boson arising from (coupled to) a strong sector have been proposed. Such strong dynamics would help to cause the electroweak symmetry breaking naturally. In this paper, we focus on the compositeness of the Higgsinos in such models. We show that such a Higgsino compositeness can induce the characteristic decay branching fraction of the neutralinos. In such scenarios, the decay branching fraction of the second lightest neutral Higgsino into the lightest neutral Higgsino with photon can be large due to a dipole interaction. We also discuss the Higgsino dark matter feature. The annihilation cross section into γZ can be large.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Asano and T. Higaki, Natural supersymmetric spectrum in mirage mediation, Phys. Rev. D 86 (2012) 035020 [arXiv:1204.0508] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Kobayashi, H. Makino, K.-i. Okumura, T. Shimomura and T. Takahashi, TeV scale mirage mediation in NMSSM, JHEP 01 (2013) 081 [arXiv:1204.3561] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Fukushima, R. Kitano and M. Yamaguchi, SuperTopcolor, JHEP 01 (2011) 111 [arXiv:1012.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Csáki, Y. Shirman and J. Terning, A Seiberg dual for the MSSM: partially composite W and Z, Phys. Rev. D 84 (2011) 095011 [arXiv:1106.3074] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor, Phys. Rev. Lett. 108 (2012) 041802 [arXiv:1106.3346] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: models and phenomenology, Phys. Rev. D 85 (2012) 015018 [arXiv:1106.4815] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.J. Heckman, P. Kumar, C. Vafa and B. Wecht, Electroweak symmetry breaking in the DSSM, JHEP 01 (2012) 156 [arXiv:1108.3849] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.L. Evans, M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in the MSSM with strongly interacting spectators, Phys. Rev. D 86 (2012) 015017 [arXiv:1204.6085] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R. Kitano, M.A. Luty and Y. Nakai, Partially composite Higgs in supersymmetry, JHEP 08 (2012) 111 [arXiv:1206.4053] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Barbieri, D. Buttazzo, K. Kannike, F. Sala and A. Tesi, Exploring the Higgs sector of a most natural NMSSM, Phys. Rev. D 87 (2013) 115018 [arXiv:1304.3670] [INSPIRE].ADSGoogle Scholar
  19. [19]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Ferrara and E. Remiddi, Absence of the anomalous magnetic moment in a supersymmetric abelian gauge theory, Phys. Lett. B 53 (1974) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Ferrara and M. Porrati, Supersymmetric sum rules on magnetic dipole moments of arbitrary spin particles, Phys. Lett. B 288 (1992) 85 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Georgi and L. Randall, Flavor conserving CP-violation in invisible axion models, Nucl. Phys. B 276 (1986) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    T. Kobayashi and H. Terao, Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs, Phys. Rev. D 64 (2001) 075003 [hep-ph/0103028] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four-dimensions, naturally, Phys. Rev. D 67 (2003) 045007 [hep-th/0111231] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    M. Dine et al., Visible effects of the hidden sector, Phys. Rev. D 70 (2004) 045023 [hep-ph/0405159] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Ibe, K.-I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, Conformally sequestered SUSY breaking in vector-like gauge theories, Phys. Rev. D 73 (2006) 015004 [hep-ph/0506023] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Ibe, K.-I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, More on conformally sequestered SUSY breaking, Phys. Rev. D 73 (2006) 035012 [hep-ph/0509229] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Schmaltz and R. Sundrum, Conformal sequestering simplified, JHEP 11 (2006) 011 [hep-th/0608051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    A.G. Cohen, T.S. Roy and M. Schmaltz, Hidden sector renormalization of MSSM scalar masses, JHEP 02 (2007) 027 [hep-ph/0612100] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.E. Haber and D. Wyler, Radiative neutralino decay, Nucl. Phys. B 323 (1989) 267 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p} p \) and e + e reactions, hep-ph/0312045 [INSPIRE].
  44. [44]
    L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B 504 (1997) 27 [hep-ph/9706232] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D 57 (1998) 1962 [hep-ph/9707333] [INSPIRE].ADSGoogle Scholar
  46. [46]
    F. Boudjema, A. Semenov and D. Temes, Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the MSSM, Phys. Rev. D 72 (2005) 055024 [hep-ph/0507127] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT search for internal Bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    LAT collaboration, W.B. Atwood et al., The Large Area Telescope on the Fermi gamma-ray space telescope mission, Astrophys. J. 697 (2009) 1071 [arXiv:0902.1089] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Bringmann and C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    Fermi-LAT collaboration, M. Ackermann et al., Search for Gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications, Phys. Rev. D 88 (2013) 082002 [arXiv:1305.5597] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M.R. Buckley and D. Hooper, Implications of a 130 GeV gamma-ray line for dark matter, Phys. Rev. D 86 (2012) 043524 [arXiv:1205.6811] [INSPIRE].ADSGoogle Scholar
  54. [54]
    W. Buchmüller and M. Garny, Decaying vsannihilating dark matter in light of a tentative gamma-ray line, JCAP 08 (2012) 035 [arXiv:1206.7056] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Cohen, M. Lisanti, T.R. Slatyer and J.G. Wacker, Illuminating the 130 GeV gamma line with continuum photons, JHEP 10 (2012) 134 [arXiv:1207.0800] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. Cholis, M. Tavakoli and P. Ullio, Searching for the continuum spectrum photons correlated to the 130 GeV gamma-ray line, Phys. Rev. D 86 (2012) 083525 [arXiv:1207.1468] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Asano, T. Bringmann, G. Sigl and M. Vollmann, 130 GeV gamma-ray line and generic dark matter model building constraints from continuum gamma rays, radio and antiproton data, Phys. Rev. D 87 (2013) 103509 [arXiv:1211.6739] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K.A. Olive and M. Srednicki, Cosmological limits on massive LSPs, Nucl. Phys. B 355 (1991) 208 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Cheung, S.Y. Choi and J. Song, Impact on the light higgsino-LSP scenario from physics beyond the minimal supersymmetric standard model, Phys. Lett. B 677 (2009) 54 [arXiv:0903.3175] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Berg, J. Edsjo, P. Gondolo, E. Lundstrom and S. Sjors, Neutralino dark matter in BMSSM effective theory, JCAP 08 (2009) 035 [arXiv:0906.0583] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Bernal, K. Blum, Y. Nir and M. Losada, BMSSM implications for cosmology, JHEP 08 (2009) 053 [arXiv:0906.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    N. Bernal and A. Goudelis, Dark matter detection in the BMSSM, JCAP 03 (2010) 007 [arXiv:0912.3905] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Asano and R. Sato, in preparation.Google Scholar
  64. [64]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM with Dimension-five Operators (MSSM(5)), Nucl. Phys. B 808 (2009) 155 [arXiv:0806.3778] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    M. Berkooz and Y. Hochberg, Splitting the wino multiplet by higher-dimensional operators in anomaly mediation, Phys. Rev. D 79 (2009) 035008 [arXiv:0809.4832] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Carena, K. Kong, E. Ponton and J. Zurita, Supersymmetric Higgs bosons and beyond, Phys. Rev. D 81 (2010) 015001 [arXiv:0909.5434] [INSPIRE].ADSGoogle Scholar
  67. [67]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM Higgs with dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Beyond the MSSM Higgs with D = 6 effective operators, Nucl. Phys. B 848 (2011) 1[arXiv:1012.5310] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Cassel and D.M. Ghilencea, A review of naturalness and dark matter prediction for the Higgs mass in MSSM and beyond, Mod. Phys. Lett. A 27 (2012) 1230003 [arXiv:1103.4793] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Piriz and J. Wudka, Effective operators in supersymmetry, Phys. Rev. D 56 (1997) 4170 [hep-ph/9707314] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Brignole, J.A. Casas, J.R. Espinosa and I. Navarro, Low scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Pospelov, A. Ritz and Y. Santoso, Flavor and CP-violating physics from new supersymmetric thresholds, Phys. Rev. Lett. 96 (2006) 091801 [hep-ph/0510254] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Pospelov, A. Ritz and Y. Santoso, Sensitivity to new supersymmetric thresholds through flavour and CP-violating physics, Phys. Rev. D 74 (2006) 075006 [hep-ph/0608269] [INSPIRE].ADSGoogle Scholar
  76. [76]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  77. [77]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    P. Batra and E. Ponton, Supersymmetric electroweak symmetry breaking, Phys. Rev. D 79 (2009) 035001 [arXiv:0809.3453] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    K. Blum, C. Delaunay and Y. Hochberg, Vacuum (meta)stability beyond the MSSM, Phys. Rev. D 80 (2009) 075004 [arXiv:0905.1701] [INSPIRE].ADSGoogle Scholar
  81. [81]
    S.W. Ham, S.-A. Shim and S.K. Oh, Possibility of spontaneous CP-violation in Higgs physics beyond the minimal supersymmetric standard model, Phys. Rev. D 80 (2009) 055009 [arXiv:0907.3300] [INSPIRE].ADSGoogle Scholar
  82. [82]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Testing SUSY at the LHC: electroweak and Dark matter fine tuning at two-loop order, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    K. Blum, C. Delaunay, M. Losada, Y. Nir and S. Tulin, CP violation beyond the MSSM: baryogenesis and electric dipole moments, JHEP 05 (2010) 101 [arXiv:1003.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    K.J. Bae, Wrong-Higgs interactions without flavor problems and their effects on physical observables, Phys. Rev. D 82 (2010) 055004 [arXiv:1003.5869] [INSPIRE].ADSGoogle Scholar
  85. [85]
    R. Franceschini and S. Gori, Solving the μ problem with a heavy Higgs boson, JHEP 05 (2011) 084 [arXiv:1005.1070] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M. Carena, E. Ponton and J. Zurita, BMSSM Higgs bosons at the Tevatron and the LHC, Phys. Rev. D 82 (2010) 055025 [arXiv:1005.4887] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. Mukhopadhyay, B. Mukhopadhyaya and S. SenGupta, Low-scale SUSY breaking by modular fields and Higgs mass bounds, arXiv:1103.3678 [INSPIRE].
  88. [88]
    N. Bernal, M. Losada and F. Mahmoudi, Flavour physics constraints in the BMSSM, JHEP 07 (2011) 074 [arXiv:1104.5395] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W. Altmannshofer, M. Carena, S. Gori and A. de la Puente, Signals of CP-violation Beyond the MSSM in Higgs and Flavor Physics, Phys. Rev. D 84 (2011) 095027 [arXiv:1107.3814] [INSPIRE].ADSGoogle Scholar
  90. [90]
    W. Altmannshofer and M. Carena, B meson mixing in effective theories of supersymmetric Higgs bosons, Phys. Rev. D 85 (2012) 075006 [arXiv:1110.0843] [INSPIRE].ADSGoogle Scholar
  91. [91]
    M. Carena, E. Ponton and J. Zurita, BMSSM Higgs bosons at the 7 TeV LHC, Phys. Rev. D 85 (2012) 035007 [arXiv:1111.2049] [INSPIRE].ADSGoogle Scholar
  92. [92]
    F. Boudjema and G. Drieu La Rochelle, SUSY Higgs searches: beyond the MSSM, Phys. Rev. D 85 (2012) 035011 [arXiv:1112.1434] [INSPIRE].ADSGoogle Scholar
  93. [93]
    F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].ADSGoogle Scholar
  94. [94]
    F. Boudjema and G.D. La Rochelle, Supersymmetric Higgses beyond the MSSM: an update with flavour and Dark Matter constraints, Phys. Rev. D 86 (2012) 115007 [arXiv:1208.1952] [INSPIRE].ADSGoogle Scholar
  95. [95]
    F. Farakos and A. Kehagias, Non-linear single Higgs MSSM, Phys. Lett. B 719 (2013) 95 [arXiv:1210.4941] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  96. [96]
    E. Dudas, C. Petersson and P. Tziveloglou, Low scale supersymmetry breaking and its LHC signatures, Nucl. Phys. B 870 (2013) 353 [arXiv:1211.5609] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  97. [97]
    M. Berg, I. Buchberger, D.M. Ghilencea and C. Petersson, Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM, Phys. Rev. D 88 (2013) 025017 [arXiv:1212.5009] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physikalisches Institut and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Theory Center, KEKTsukubaJapan

Personalised recommendations