Advertisement

Physical constraints on a class of two-Higgs doublet models with FCNC at tree level

  • F. J. Botella
  • G. C. Branco
  • Adrián Carmona
  • M. NebotEmail author
  • Leonardo Pedro
  • M. N. Rebelo
Open Access
Article

Abstract

We analyse the constraints and some of the phenomenological implications of a class of two Higgs doublet models where there are flavour-changing neutral currents (FCNC) at tree level but the potentially dangerous FCNC couplings are suppressed by small entries of the CKM matrix V. This class of models have the remarkable feature that, as a result of a discrete symmetry of the Lagrangian, the FCNC couplings are entirely fixed in the quark sector by V and the ratio v 2/v 1 of the vevs of the neutral Higgs. The discrete symmetry is extended to the leptonic sector, so that there are FCNC in the leptonic sector with their flavour structure fixed by the leptonic mixing matrix. We analyse a large number of processes, including decays mediated by charged Higgs at tree level, processes involving FCNC at tree level, as well as loop induced processes. We show that in this class of models one has new physical scalars beyond the standard Higgs boson, with masses reachable at the next round of experiments.

Keywords

Higgs Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  4. [4]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.Google Scholar
  7. [7]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M.E. Luke and M.J. Savage, Flavor changing neutral currents in the Higgs sector and rare top decays, Phys. Lett. B 307 (1993) 387 [hep-ph/9303249] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    G. Cvetič, C.S. Kim and S.S. Hwang, Higgs mediated flavor changing neutral currents in the general framework with two Higgs doublets: An RGE analysis, Phys. Rev. D 58 (1998) 116003 [hep-ph/9806282] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R.N. Mohapatra and Y. Zhang, LHC accessible second Higgs boson in the left-right model, Phys. Rev. D 89 (2014) 055001 [arXiv:1401.0018] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A.M. Hadeed and B. Holdom, Remnant Family Symmetries: A Case for \( {D}^0-{\overline{D}}^0 \) Mixing, Phys. Lett. B 159 (1985) 379 [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    G.C. Branco, W. Grimus and L. Lavoura, Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett. B 380 (1996) 119 [hep-ph/9601383] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    F.J. Botella, G.C. Branco and M.N. Rebelo, Minimal Flavour Violation and Multi-Higgs Models, Phys. Lett. B 687 (2010) 194 [arXiv:0911.1753] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    F.J. Botella, G.C. Branco, M. Nebot and M.N. Rebelo, Two-Higgs Leptonic Minimal Flavour Violation, JHEP 10 (2011) 037 [arXiv:1102.0520] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    F.J. Botella, G.C. Branco and M.N. Rebelo, Invariants and Flavour in the General Two-Higgs Doublet Model, Phys. Lett. B 722 (2013) 76 [arXiv:1210.8163] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, JHEP 11 (2012) 011 [arXiv:1205.6569] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    W. Altmannshofer, S. Gori and G.D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHC - the story so far, arXiv:1304.5225 [INSPIRE].
  23. [23]
    B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].
  24. [24]
    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  26. [26]
    P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM confronting LHC data, arXiv:1305.4587 [INSPIRE].
  27. [27]
    S. Chang et al., Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s} \) = 7 and 8 TeV, arXiv:1310.3374 [INSPIRE].
  28. [28]
    A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. Stal, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571 [INSPIRE].
  30. [30]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    C. Bobeth et al., Upper bounds on rare K and B decays from minimal flavor violation, Nucl. Phys. B 726 (2005) 252 [hep-ph/0505110] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    A. Dery, A. Efrati, G. Hiller, Y. Hochberg and Y. Nir, Higgs couplings to fermions: 2HDM with MFV, JHEP 08 (2013) 006 [arXiv:1304.6727] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    F.J. Botella, M. Nebot and O. Vives, Invariant approach to flavor-dependent CP-violating phases in the MSSM, JHEP 01 (2006) 106 [hep-ph/0407349] [INSPIRE].
  35. [35]
    P.M. Ferreira and J.P. Silva, Abelian symmetries in the two-Higgs-doublet model with fermions, Phys. Rev. D 83 (2011) 065026 [arXiv:1012.2874] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Bhattacharyya, D. Das, P.B. Pal and M.N. Rebelo, Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry, JHEP 10 (2013) 081 [arXiv:1308.4297] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    ALEPH, DELPHI, L3, OPAL, LEP collaboration, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].ADSGoogle Scholar
  38. [38]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Pich and J.P. Silva, Constraining new interactions with leptonic τ decays, Phys. Rev. D 52 (1995) 4006 [hep-ph/9505327] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    R. Decker and M. Finkemeier, Radiative corrections to the decay τ → πτ − ν, Nucl. Phys. Proc. Suppl. 40 (1995) 453 [hep-ph/9411316] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    P.M. Ferreira, L. Lavoura, J.P. Silva and L. Lavoura, A Soft origin for CKM-type CP-violation, Phys. Lett. B 704 (2011) 179 [arXiv:1102.0784] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    A. Lenz et al., Constraints on new physics in \( B-\overline{B} \) mixing in the light of recent LHCb data, Phys. Rev. D 86 (2012) 033008 [arXiv:1203.0238] [INSPIRE].ADSGoogle Scholar
  46. [46]
    F. del Aguila, J.I. Illana and M.D. Jenkins, Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    J.D. Bjorken and S. Weinberg, A Mechanism for Nonconservation of Muon Number, Phys. Rev. Lett. 38 (1977) 622 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    D. Chang, W.S. Hou and W.-Y. Keung, Two loop contributions of flavor changing neutral Higgs bosons to μ, Phys. Rev. D 48 (1993) 217 [hep-ph/9302267] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B} \)X s γ matrix elements using interpolation in m(c), Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    A.J. Buras, L. Merlo and E. Stamou, The Impact of Flavour Changing Neutral Gauge Bosons on \( \overline{B} \)X s γ, JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M. Blanke, A.J. Buras, K. Gemmler and T. Heidsieck, ΔF = 2 observables and BX q gamma decays in the Left-Right Model: Higgs particles striking back, JHEP 03 (2012) 024 [arXiv:1111.5014] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    M. Blanke, B. Shakya, P. Tanedo and Y. Tsai, The Birds and the Bs in RS: The btosγ penguin in a warped extra dimension, JHEP 08 (2012) 038 [arXiv:1203.6650] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    P. Gambino and M. Misiak, Quark mass effects in \( \overline{B} \)X s γ, Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    M. Misiak et al., Estimate of \( B\left(\overline{B}\to {X}_s\gamma \right) \) at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589 [INSPIRE].
  56. [56]
    B. Grinstein, R.P. Springer and M.B. Wise, Strong Interaction Effects in Weak Radiative B Meson Decay, Nucl. Phys. B 339 (1990) 269 [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    A.J. Buras, M. Misiak, M. Münz and S. Pokorski, Theoretical uncertainties and phenomenological aspects of BX s γ decay, Nucl. Phys. B 424 (1994) 374 [hep-ph/9311345] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    M. Jung and A. Pich, Electric Dipole Moments in Two-Higgs-Doublet Models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology, JHEP 07 (2013) 044 [arXiv:1212.6818] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    D. O’Neil, Phenomenology of the Basis-Independent CP-Violating Two-Higgs Doublet Model, arXiv:0908.1363 [INSPIRE].
  61. [61]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A Precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B} \)X s γ in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    G. Bhattacharyya, D. Das and A. Kundu, Feasibility of light scalars in a class of two-Higgs-doublet models and their decay signatures, Phys. Rev. D 89 (2014) 095029 [arXiv:1402.0364] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. Bauer, A. Frink and R. Kreckel, Introduction to the ginac framework for symbolic computation within the c++ programming language, J. Symbol. Comput. 33 (2002) 1.CrossRefzbMATHMathSciNetGoogle Scholar
  67. [67]
    R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  69. [69]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    H. Na et al., Precise Determinations of the Decay Constants of B and D mesons, PoS(LATTICE2012)102 [arXiv:1212.0586] [INSPIRE].
  71. [71]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • F. J. Botella
    • 1
  • G. C. Branco
    • 2
  • Adrián Carmona
    • 3
  • M. Nebot
    • 2
    Email author
  • Leonardo Pedro
    • 2
  • M. N. Rebelo
    • 2
  1. 1.Departament de Física Teòrica and IFICUniversitat de València - CSICBurjassotSpain
  2. 2.Centro de Física Teórica de Partıculas, and Departamento de Física Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Institute for Theoretical Physics, ETH ZurichZurichSwitzerland

Personalised recommendations