Advertisement

Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50

  • P. Bakhti
  • Y. Farzan
Open Access
Article

Abstract

In the presence of Non-Standard neutral current Interactions (NSI) a new solution to solar neutrino anomaly with cos 2θ 12 < 0 appears. We investigate how this solution can be tested by upcoming intermediate baseline reactor experiments, JUNO and RENO-50. We point out a degeneracy between the two solutions when both hierarchy and the θ 12 octant are flipped. We then comment on how this degeneracy can be partially lifted by long baseline experiments sensitive to matter effects such as the NOvA experiment.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y. Farzan, S. Pascoli and M.A. Schmidt, AMEND: A model explaining neutrino masses and dark matter testable at the LHC and MEG, JHEP 10 (2010) 111 [arXiv:1005.5323] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Robustness of solar neutrino oscillations in the presence of non-standard physics, AIP Conf. Proc. 917 (2007) 100 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F.J. Escrihuela, O.G. Miranda, M.A. Tortola and J.W.F. Valle, Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, Phys. Rev. D 80 (2009) 105009 [Erratum ibid. D 80 (2009) 129908] [arXiv:0907.2630] [INSPIRE].
  6. [6]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.-F. Ge, K. Hagiwara, N. Okamura and Y. Takaesu, Determination of mass hierarchy with medium baseline reactor neutrino experiments, JHEP 05 (2013) 131 [arXiv:1210.8141] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Ciuffoli, J. Evslin and X. Zhang, Mass Hierarchy Determination Using Neutrinos from Multiple Reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.B. Balantekin, H. Band, R. Betts, J.J. Cherwinka, J.A. Detwiler et al., Neutrino mass hierarchy determination and other physics potential of medium-baseline reactor neutrino oscillation experiments, arXiv:1307.7419 [INSPIRE].
  13. [13]
    M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089 [arXiv:1306.3988] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Ciuffoli, J. Evslin and X. Zhang, Neutrino mass hierarchy from nuclear reactor experiments, Phys. Rev. D 88 (2013) 033017 [arXiv:1302.0624] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Ciuffoli, J. Evslin, Z. Wang, C. Yang, X. Zhang et al., Advantages of Multiple Detectors for the Neutrino Mass Hierarchy Determination at Reactor Experiments, Phys. Rev. D 89 (2014) 073006 [arXiv:1308.0591] [INSPIRE].ADSGoogle Scholar
  16. [16]
    X. Qian, D.A. Dwyer, R.D. McKeown, P. Vogel, W. Wang et al., Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response, Phys. Rev. D 87 (2013) 033005 [arXiv:1208.1551] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Ciuffoli, J. Evslin and X. Zhang, The Neutrino Mass Hierarchy at Reactor Experiments now that theta13 is Large, JHEP 03 (2013) 016 [arXiv:1208.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Bandyopadhyay, S. Choubey, S. Goswami and S.T. Petcov, High precision measurements of theta(solar) in solar and reactor neutrino experiments, Phys. Rev. D 72 (2005) 033013 [hep-ph/0410283] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Bandyopadhyay, S. Choubey and S. Goswami, Exploring the sensitivity of current and future experiments to theta(solar), Phys. Rev. D 67 (2003) 113011 [hep-ph/0302243] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Choubey, S.T. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.T. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and θ 13 with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Bakhti and Y. Farzan, Constraining Super-light Sterile Neutrino Scenario by JUNO and RENO-50, JHEP 10 (2013) 200 [arXiv:1308.2823] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.N. Khan, D.W. McKay and F. Tahir, Sensitivity of medium-baseline reactor neutrino mass-hierarchy experiments to nonstandard interactions, Phys. Rev. D 88 (2013) 113006 [arXiv:1305.4350] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Ohlsson, H. Zhang and S. Zhou, Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments, Phys. Lett. B 728 (2014) 148 [arXiv:1310.5917] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
  31. [31]
  32. [32]
    KamLAND collaboration, A. Gando et al., Reactor On-Off Antineutrino Measurement with KamLAND, Phys. Rev. D 88 (2013) 033001 [arXiv:1303.4667] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Grassi, J. Evslin, E. Ciuffoli and X. Zhang, Showering Cosmogenic Muons in A Large Liquid Scintillator, arXiv:1401.7796 [INSPIRE].
  34. [34]
  35. [35]
    J Evslin, private communication.Google Scholar
  36. [36]
    S.-H. Seo, talk at International Workshop onRENO-50toward Neutrino Mass Hierarchy, 13 June 2013, Seoul National University, Korea.Google Scholar
  37. [37]
    T. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  39. [39]
    R.N. Cahn, D.A. Dwyer, S.J. Freedman, W.C. Haxton, R.W. Kadel et al., White Paper: Measuring the Neutrino Mass Hierarchy, arXiv:1307.5487 [INSPIRE].
  40. [40]
    H. Murayama and A. Pierce, Energy spectra of reactor neutrinos at KamLAND, Phys. Rev. D 65 (2002) 013012 [hep-ph/0012075] [INSPIRE].ADSGoogle Scholar
  41. [41]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( {\overline{\nu}}_e+ p\to {e}^{+} + n \), Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet In. 24 (1981) 297.ADSCrossRefGoogle Scholar
  45. [45]
    A. Friedland and I.M. Shoemaker, Searching for Novel Neutrino Interactions at NOvA and Beyond in Light of Large θ 13, arXiv:1207.6642 [INSPIRE].
  46. [46]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  47. [47]
    NOvA collaboration, D.S. Ayres et al., NOvA: Proposal to build a 30 kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  48. [48]
    Off-Axis-Note-SIM-30 T. Yang and S. Woijcicki, Study of physics sensitivity of ν μ disappearance in a totally active version of nova detector, Off-Axis-Note-SIM-30.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.School of physics, Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations