Advertisement

Towards ℛ-matrix construction of Khovanov-Rozansky polynomials I. Primary T-deformation of HOMFLY

  • A. Anokhina
  • A. MorozovEmail author
Open Access
Article

Abstract

We elaborate on the simple alternative [1] to the matrix-factorization construction of Khovanov-Rozansky (KR) polynomials for arbitrary knots and links in the fundamental representation of arbitrary SL(N). Construction consists of two steps: with every link diagram with m vertices one associates an m-dimensional hypercube with certain q-graded vector spaces, associated to its 2 m vertices. A generating function for q-dimensions of these spaces is what we suggest to call the primary T -deformation of HOMFLY polynovmial — because, as we demonstrate, it can be explicitly reduced to calculations of ordinary HOMFLY polynomials, i.e. to manipulations with quantum R-matrices, what brings the story completely inside the ordinary Chern-Simons theory. The second step is a certain minimization of residues of this new polynomial with respect to T + 1. Minimization is ambiguous and is actually specified by the choice of commuting cut-and-join morphisms, acting along the edges of the hypercube — this promotes it to Abelian quiver, and KR polynomial is a Poincare polynomial of associated complex, just in the original Khovanov’s construction at N = 2. This second step is still somewhat sophisticated — though incomparably simpler than its conventional matrix-factorization counterpart. In this paper we concentrate on the first step, and provide just a mnemonic treatment of the second step. Still, this is enough to demonstrate that all the currently known examples of KR polynomials in the fundamental representation can be easily reproduced in this new approach. As additional bonus we get a simple description of the DGR relation between KR polynomials and superpolynomials and demonstrate that the difference between reduced and unreduced cases, which looks essential at KR level, practically disappears after transition to superpolynomials. However, a careful derivation of all these results from cohomologies of cut-and-join morphisms remains for further studies.

Keywords

Topological Strings Chern-Simons Theories Topological Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Dolotin and A. Morozov, Introduction to Khovanov homologies. III. A new and simple tensor-algebra construction of Khovanov-Rozansky invariants, Nucl. Phys. B 878 (2014) 12 [arXiv:1308.5759] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Nat. Acad. Sci. 68 (1971) 791.ADSzbMATHMathSciNetGoogle Scholar
  3. [3]
    S.-S. Chern and J. Simons, Characteristic forms and geometric invariants, Annals Math. 99 (1974) 48 [INSPIRE].zbMATHMathSciNetGoogle Scholar
  4. [4]
    A.S. Schwarz, New topological invariants arising in the theory of quantized fields, Baku Topol. Conf., (1987).Google Scholar
  5. [5]
    E. Witten, Quantum Field Theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  6. [6]
    M.Atiyah, The geometry and physics of knots, CUP, Cambridge U.K. (1990).zbMATHGoogle Scholar
  7. [7]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    Al.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088 [Teor. Mat. Fiz. 73 (1987) 103].Google Scholar
  11. [11]
    Al. Zamolodchikov and A. Zamolodchikov, Conformal Field Theory and critical phenomena in 2d systems (in Russian), (2009).Google Scholar
  12. [12]
    V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    G.W. Moore and N. Seiberg, Classical and Quantum Conformal Field theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  14. [14]
    A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov and S.L. Shatashvili, Wess-Zumino-Witten model as a theory of free fields, Int. J. Mod. Phys. A 5 (1990) 2495 [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    P.H. Ginsparg, Applied Conformal Field Theory, hep-th/9108028 [INSPIRE].
  16. [16]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, Germany (1997).zbMATHGoogle Scholar
  17. [17]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  18. [18]
    A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, Theor. Math. Phys. 165 (2010) 1662 [Teor. Mat. Fiz. 165 (2010) 503] [arXiv:0908.2064] [INSPIRE].
  19. [19]
    V.G. Knizhnik and A.Y. Morozov, Renormalization of topological charge, JETP Lett. 39 (1984) 240 [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Levine and S.B. Libby, Renormalization of the θ angle, the quantum hall effect and the strong CP problem, Phys. Lett. B 150 (1985) 182 [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  22. [22]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  27. [27]
    A. Marshakov, M. Martellini and A. Morozov, Insights and puzzles from branes: 4D SUSY Yang-Mills from 6D models, Phys. Lett. B 418 (1998) 294 [hep-th/9706050] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A. Losev, G.W. Moore, N. Nekrasov and S. Shatashvili, Four-dimensional avatars of two-dimensional RCFT, Nucl. Phys. Proc. Suppl. 46 (1996) 130 [hep-th/9509151] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  29. [29]
    A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE].
  31. [31]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  32. [32]
    G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  33. [33]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  34. [34]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  35. [35]
    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 10 (2004) 033 [hep-th/0408066] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    S. Shadchin, Status report on the instanton counting, SIGMA 2 (2006) 008 [hep-th/0601167] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  39. [39]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories, arXiv:1211.2240 [INSPIRE].
  41. [41]
    N. Nekrasov and E. Witten, The omega deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  44. [44]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  45. [45]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  46. [46]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].
  47. [47]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing in coupled 2d-4d systems, arXiv:1103.2598 [INSPIRE].
  48. [48]
    D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  49. [49]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    A. Marshakov, A. Mironov and A. Morozov, Combinatorial expansions of conformal blocks, Theor. Math. Phys. 164 (2010) 831 [arXiv:0907.3946] [INSPIRE].zbMATHGoogle Scholar
  52. [52]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  55. [55]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].
  56. [56]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, JETP Lett. 90 (2009) 708 [arXiv:0911.0363] [INSPIRE].ADSGoogle Scholar
  62. [62]
    V. Alba and A. Morozov, Check of AGT relation for conformal blocks on sphere, Nucl. Phys. B 840 (2010) 441 [arXiv:0912.2535] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin systems via beta-deformed matrix models, arXiv:1104.4016 [INSPIRE].
  67. [67]
    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and N = 2 gauge systems, arXiv:0909.2453 [INSPIRE].
  69. [69]
    H. Itoyama, K. Maruyoshi and T. Oota, The quiver matrix model and 2d-4d conformal connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].ADSzbMATHGoogle Scholar
  70. [70]
    T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].ADSMathSciNetGoogle Scholar
  71. [71]
    T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    R. Schiappa and N. Wyllard, An A r threesome: matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev integral discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    A. Mironov, A. Morozov and S. Shakirov, OnDotsenko-Fateevrepresentation of the toric conformal blocks, J. Phys. A 44 (2011) 085401 [arXiv:1010.1734] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    A. Mironov, A. Morozov and S. Shakirov, A direct proof of AGT conjecture at β = 1, JHEP 02 (2011) 067 [arXiv:1012.3137] [INSPIRE].ADSMathSciNetGoogle Scholar
  77. [77]
    H. Itoyama and T. Oota, Method of generating q-expansion coefficients for conformal block and N = 2 Nekrasov function by beta-deformed matrix model, Nucl. Phys. B 838 (2010) 298 [arXiv:1003.2929] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    A. Mironov, A. Morozov and A. Morozov, Conformal blocks and generalized Selberg integrals, Nucl. Phys. B 843 (2011) 534 [arXiv:1003.5752] [INSPIRE].ADSMathSciNetGoogle Scholar
  79. [79]
    A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    H. Zhang and Y. Matsuo, Selberg integral and SU(N) AGT conjecture, JHEP 12 (2011) 106 [arXiv:1110.5255] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    D. Galakhov, A. Mironov and A. Morozov, S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality, arXiv:1311.7069 [INSPIRE].
  82. [82]
    S. Mironov, A. Morozov and Y. Zenkevich, Generalized Jack polynomials and the AGT relations for the SU(3) group, JETP Lett. 99 (2014) 109 [arXiv:1312.5732] [INSPIRE].ADSGoogle Scholar
  83. [83]
    V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  85. [85]
    A. Belavin and V. Belavin, AGT conjecture and integrable structure of Conformal Field Theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].ADSMathSciNetGoogle Scholar
  86. [86]
    A.A. Belavin, M.A. Bershtein, B.L. Feigin, A.V. Litvinov and G.M. Tarnopolsky, Instanton moduli spaces and bases in coset Conformal Field Theory, Comm. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  87. [87]
    S. Kanno, Y. Matsuo and H. Zhang, Virasoro constraint for Nekrasov instanton partition function, JHEP 10 (2012) 097 [arXiv:1207.5658] [INSPIRE].ADSMathSciNetGoogle Scholar
  88. [88]
    S. Kanno, Y. Matsuo and H. Zhang, Extended conformal symmetry and recursion formulae for Nekrasov partition function, JHEP 08 (2013) 028 [arXiv:1306.1523] [INSPIRE].ADSGoogle Scholar
  89. [89]
    H. Nakajima, Lectures on Hilbert schemes of points on surfaces, AMS, U.S.A. (1999).zbMATHGoogle Scholar
  90. [90]
    H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994) 365.zbMATHMathSciNetGoogle Scholar
  91. [91]
    H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998) 515.zbMATHMathSciNetGoogle Scholar
  92. [92]
    H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. 145 (1997) 379388 [alg-geom/9507012].MathSciNetGoogle Scholar
  93. [93]
    H. Nakajima, Jack polynomials and Hilbert schemes of points on surfaces, alg-geom/9610021.
  94. [94]
    H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2000) 145 [math.QA/9912158].MathSciNetGoogle Scholar
  95. [95]
    A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 [math.AG/0411210].ADSzbMATHMathSciNetGoogle Scholar
  96. [96]
    W.-P. Li, Z. Qin and W. Wang, The cohomology rings of Hilbert schemes via Jack polynomials, CRM Proc. Lect. Notes 38 (2004) 249258 [math.AG/0411255].MathSciNetGoogle Scholar
  97. [97]
    A. Smirnov, On the instanton R-matrix, arXiv:1302.0799 [INSPIRE].
  98. [98]
    S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002) 497 [math.RT/0104151].zbMATHMathSciNetGoogle Scholar
  99. [99]
    S. Fomin and A. Zelevinsky, Cluster algebras IV: coefficients, Composito Math. 143 (2007) 112 [math.RA/0602259].zbMATHMathSciNetGoogle Scholar
  100. [100]
    V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 [math.AG/0311149].zbMATHMathSciNetGoogle Scholar
  101. [101]
    S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces. part I: cluster complexes, Acta Math. 201 (2008) 83 [math.RA/0608367].zbMATHMathSciNetGoogle Scholar
  102. [102]
    S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Λ lengths, arXiv:1210.5569.
  103. [103]
    V.V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems, arXiv:1401.1606 [INSPIRE].
  104. [104]
    A. Popolitov, The cluster variety face of quantum groups, arXiv:1403.1834 [INSPIRE].
  105. [105]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  106. [106]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  107. [107]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, arXiv:1112.5179 [INSPIRE].
  108. [108]
    D.V. Galakhov et al., Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation, Theor. Math. Phys. 172 (2012) 939 [arXiv:1104.2589] [INSPIRE].zbMATHGoogle Scholar
  109. [109]
    A. Mironov and A. Morozov, Equations on knot polynomials and 3d/5d duality, AIP Conf. Proc. 1483 (2012) 189 [arXiv:1208.2282] [INSPIRE].ADSGoogle Scholar
  110. [110]
    M. Adams, J.P. Harnad and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990) 299 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  111. [111]
    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and \( \left(\mathfrak{g}{\mathfrak{l}}_N,\mathfrak{g}{\mathfrak{l}}_M\right) \) dualities, math.QA/0510364.
  112. [112]
    E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and \( \left(\mathfrak{g}{\mathfrak{l}}_N,\mathfrak{g}{\mathfrak{l}}_M\right) \) dualities, discrete versus differential, math.QA/0605172.
  113. [113]
    E. Mukhin, V. Tarasov and A. Varchenko, A generalization of the Capelli identity, math.QA/0610799.
  114. [114]
    A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral duality in integrable systems from AGT conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].ADSGoogle Scholar
  115. [115]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  116. [116]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].ADSMathSciNetGoogle Scholar
  117. [117]
    B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].
  118. [118]
    B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of Uq (sl(2, R)), Commun. Math. Phys. 224 (2001) 613 [math.QA/0007097] [INSPIRE].ADSMathSciNetGoogle Scholar
  119. [119]
    J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031 [INSPIRE].
  120. [120]
    D. Galakhov, A. Mironov and A. Morozov, S-duality as a beta-deformed Fourier transform, JHEP 08 (2012) 067 [arXiv:1205.4998] [INSPIRE].ADSMathSciNetGoogle Scholar
  121. [121]
    D. Galakhov, A. Mironov and A. Morozov, S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality, arXiv:1311.7069 [INSPIRE].
  122. [122]
    M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Deformed N = 2 theories, generalized recursion relations and S-duality, JHEP 04 (2013) 039 [arXiv:1302.0686] [INSPIRE].ADSGoogle Scholar
  123. [123]
    M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat kernel and S-duality in N = 2 theories, JHEP 11 (2013) 123 [arXiv:1307.6648] [INSPIRE].ADSGoogle Scholar
  124. [124]
    N. Nemkov, S-duality as Fourier transform for arbitrary ϵ 1 , ϵ 2, arXiv:1307.0773 [INSPIRE].
  125. [125]
    N. Iorgov, O. Lisovyy and Y. Tykhyy, Painlevé VI connection problem and monodromy of c = 1 conformal blocks, JHEP 12 (2013) 029 [arXiv:1308.4092] [INSPIRE].ADSMathSciNetGoogle Scholar
  126. [126]
    M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville triality, arXiv:1309.1687 [INSPIRE].
  127. [127]
    M. Aganagic, N. Haouzi and S. Shakirov, A n -triality, arXiv:1403.3657 [INSPIRE].
  128. [128]
    J.W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275.zbMATHMathSciNetGoogle Scholar
  129. [129]
    J.H. Conway, Algebraic properties, in Computational problems in abstract algebra, J. Leech ed., Proc. Conf. Oxford, 1967, Pergamon Press, Oxford U.K. and New York U.S.A. (1970), pg. 329.Google Scholar
  130. [130]
    V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983) 1.ADSzbMATHMathSciNetGoogle Scholar
  131. [131]
    V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103.zbMATHMathSciNetGoogle Scholar
  132. [132]
    V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Annals Math. 126 (1987) 335 [INSPIRE].zbMATHGoogle Scholar
  133. [133]
    L. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395.zbMATHMathSciNetGoogle Scholar
  134. [134]
    P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239.zbMATHMathSciNetGoogle Scholar
  135. [135]
    J.H. Przytycki and K.P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987) 115.zbMATHMathSciNetGoogle Scholar
  136. [136]
    E. Witten, Two lectures on the Jones polynomial and Khovanov homology, arXiv:1401.6996 [INSPIRE].
  137. [137]
    S.A. Cherkis, Octonions, monopoles and knots, arXiv:1403.6836 [INSPIRE].
  138. [138]
    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 [math.QA/9908171].zbMATHMathSciNetGoogle Scholar
  139. [139]
    D. Bar-Natan, On Khovanovs categorification of the Jones polynomial, Alg. Geom. Topol. 2 (2002) 337 [math.QA/0201043].zbMATHMathSciNetGoogle Scholar
  140. [140]
    M. Khovanov, Patterns in knot cohomology I, Exper. Math. 12 (2003) 365 [math.QA/0201306].zbMATHMathSciNetGoogle Scholar
  141. [141]
    M. Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005) 111 [math.QA/0302060].zbMATHMathSciNetGoogle Scholar
  142. [142]
    M. Khovanov, \( \mathfrak{sl}(3) \) link homology, Algebr. Geom. Topol. 4 (2004) 1045 [math.QA/0304375].zbMATHMathSciNetGoogle Scholar
  143. [143]
    M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Int. J. Math. 18 (2007) 869 [math.GT/0510265].zbMATHMathSciNetGoogle Scholar
  144. [144]
    M. Khovanov, Link homology and categorification, math.QA/0605339.
  145. [145]
    M. Khovanov, Categorifications from planar diagrammatics, arXiv:1008.5084.
  146. [146]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math.QA/0401268].zbMATHMathSciNetGoogle Scholar
  147. [147]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008) 1387 [math.QA/0505056].zbMATHMathSciNetGoogle Scholar
  148. [148]
    M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial, math.QA/0701333.
  149. [149]
    A.Shumakovitch, Torsion of the Khovanov homology, math.GT/0405474.
  150. [150]
    D. Bar-Natan, Khovanovs homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 [math.GT/0410495].zbMATHMathSciNetGoogle Scholar
  151. [151]
    D. Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramifications 16 (2007) 243 [math.GT/0606318].zbMATHMathSciNetGoogle Scholar
  152. [152]
    L. Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 [math.GT/0407071].zbMATHMathSciNetGoogle Scholar
  153. [153]
    S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  154. [154]
    J. Rasmussen, Khovanov-Rozansky homology of two-bridge knots and links, Duke Math. J. 136 (2007) 551 [math.GT/0508510].zbMATHMathSciNetGoogle Scholar
  155. [155]
    J. Rasmussen, Some differentials on Khovanov-Rozansky homology, math.GT/0607544.
  156. [156]
    S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology, hep-th/0512298 [INSPIRE].
  157. [157]
    E. Wagner, Sur lhomologie de Khovanov-Rozansky des graphes et des entrelacs (in French), Université Louis Pasteur, Strasbourg France (2007).Google Scholar
  158. [158]
    M. Stosic, Homological thickness and stability of torus knots, Algebr. Geom. Topol. 7 (2007) 261 [math.GT/0511532].zbMATHMathSciNetGoogle Scholar
  159. [159]
    M. Stosic, Khovanov homology of links and graphs, math.QA/0605579.
  160. [160]
    M. Stosic, Homology of torus links, Topology Appl. 156 (2009) 533 [math.QA/0606656].zbMATHMathSciNetGoogle Scholar
  161. [161]
    P. Turner, A spectral sequence for Khovanov homology with an application to (3, q)-torus links, Algebr. Geom. Topol. 8 (2008) 869 [math.GT/0606369].
  162. [162]
    P. Turner, Five lectures on Khovanov homology, math.GT/0606464.
  163. [163]
    E. Gorsky, q, t-Catalan numbers and knot homology, Contemp. Math. 566, AMS, Providence U.S.A. (2012), pg. 213 [arXiv:1003.0916].
  164. [164]
    E. Gorsky, Arc spaces and DAHA representations, Selecta Math. 19 (2013) 125 [arXiv:1110.1674].zbMATHMathSciNetGoogle Scholar
  165. [165]
    E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan numbers, I, J. Combinat. Theor. A 120 (2013) 49 [arXiv:1105.1151].MathSciNetGoogle Scholar
  166. [166]
    E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan numbers, II, J. Alg. Combinat. 39 (2014) 153 [arXiv:1204.5448].zbMATHMathSciNetGoogle Scholar
  167. [167]
    L. Rozansky, An infinite torus braid yields a categorified Jones-Wenzl projector, arXiv:1005.3266.
  168. [168]
    B. Webster, Knot invariants and higher representation theory II: the categorification of quantum knot invariants, arXiv:1005.4559.
  169. [169]
    N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Topology 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  170. [170]
    H. Wu, Colored \( \mathfrak{sl}(N) \) link homology via matrix factorizations, arXiv:1110.2076.
  171. [171]
    A. Oblomkov, J. Rasmussen and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, arXiv:1201.2115 [INSPIRE].
  172. [172]
    E. Gorsky, A. Oblomkov and J. Rasmussen, On stable Khovanov homology of torus knots, Exper. Math. 22 (2013) 265 [arXiv:1206.2226].zbMATHMathSciNetGoogle Scholar
  173. [173]
    N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, arXiv:1208.1481 [INSPIRE].
  174. [174]
    N. Carqueville and D. Murfet, A toolkit for defect computations in Landau-Ginzburg models, arXiv:1303.1389 [INSPIRE].
  175. [175]
    V. Dolotin and A. Morozov, Introduction to Khovanov homologies. I. Unreduced Jones superpolynomial, JHEP 01 (2013) 065 [arXiv:1208.4994] [INSPIRE].ADSMathSciNetGoogle Scholar
  176. [176]
    V. Dolotin and A. Morozov, Introduction to Khovanov homologies. II. Reduced Jones superpolynomials, J. Phys. Conf. Ser. 411 (2013) 012013 [arXiv:1209.5109] [INSPIRE].ADSGoogle Scholar
  177. [177]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  178. [178]
    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].ADSMathSciNetGoogle Scholar
  179. [179]
    N.M. Dunfield, S. Gukov and J. Rasmussen, The superpolynomial for knot homologies, Exper. Math. 15 (2006) 129 [math.GT/0505662] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  180. [180]
    I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhauser, Boston U.S.A. (1994).zbMATHGoogle Scholar
  181. [181]
    V. Dolotin and A. Morozov, Introduction to non-linear algebra, World Scientific, Singapore (2007) [hep-th/0609022] [INSPIRE].Google Scholar
  182. [182]
    A. Morozov and S. Shakirov, New and old results in resultant theory, arXiv:0911.5278 [INSPIRE].
  183. [183]
    N. Reshetikhin, Invariants of tangles 1, LOMI preprint E-4-87, Russia (1987), http://math.berkeley.edu/~reshetik/Publications/QGInv-1-1987.pdf.
  184. [184]
    N. Reshetikhin, Invariants of tangles 2, LOMI preprint, E-17-87, Russia (1987), http://math.berkeley.edu/~reshetik/Publications/QGInv-2-1987.pdf.
  185. [185]
    V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988) 527 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  186. [186]
    E. Guadagnini, M. Martellini and M. Mintchev, Chern-Simons holonomies and the appearance of quantum groups, in Proceedings, Quantum groups, Clausthal, (1989), pg. 307 [Phys. Lett. B 235 (1990) 275] [INSPIRE].
  187. [187]
    N.Y. Reshetikhin and V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  188. [188]
    A. Morozov and A. Rosly, unpublished, (1991).Google Scholar
  189. [189]
    R.K. Kaul and T.R. Govindarajan, Three-dimensional Chern-Simons theory as a theory of knots and links, Nucl. Phys. B 380 (1992) 293 [hep-th/9111063] [INSPIRE].ADSMathSciNetGoogle Scholar
  190. [190]
    P. Rama Devi, T.R. Govindarajan and R.K. Kaul, Three-dimensional Chern-Simons theory as a theory of knots and links. 3. Compact semisimple group, Nucl. Phys. B 402 (1993) 548 [hep-th/9212110] [INSPIRE].ADSMathSciNetGoogle Scholar
  191. [191]
    P. Ramadevi, T.R. Govindarajan and R.K. Kaul, Knot invariants from rational conformal field theories, Nucl. Phys. B 422 (1994) 291 [hep-th/9312215] [INSPIRE].ADSMathSciNetGoogle Scholar
  192. [192]
    P. Ramadevi and T. Sarkar, On link invariants and topological string amplitudes, Nucl. Phys. B 600 (2001) 487 [hep-th/0009188] [INSPIRE].ADSMathSciNetGoogle Scholar
  193. [193]
    A. Morozov and A. Smirnov, Chern-Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix, Nucl. Phys. B 835 (2010) 284 [arXiv:1001.2003] [INSPIRE].ADSMathSciNetGoogle Scholar
  194. [194]
    M. Aganagic and S. Shakirov, Knot homology from refined Chern-Simons theory, arXiv:1105.5117 [INSPIRE].
  195. [195]
    M. Aganagic and S. Shakirov, Refined Chern-Simons theory and knot homology, arXiv:1202.2489 [INSPIRE].
  196. [196]
    P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for toric knots from evolution induced by cut-and-join operators, JHEP 03 (2013) 021 [arXiv:1106.4305] [INSPIRE].ADSMathSciNetGoogle Scholar
  197. [197]
    I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv:1111.6195 [INSPIRE].
  198. [198]
    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. I. Integrability and difference equations, arXiv:1112.5754 [INSPIRE].
  199. [199]
    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid, JHEP 03 (2012) 034 [arXiv:1112.2654] [INSPIRE].ADSMathSciNetGoogle Scholar
  200. [200]
    H. Itoyama, A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. III. All 3-strand braids in the first symmetric representation, Int. J. Mod. Phys. A 27 (2012) 1250099 [arXiv:1204.4785] [INSPIRE].ADSMathSciNetGoogle Scholar
  201. [201]
    H. Itoyama, A. Mironov, A. Morozov and A. Morozov, Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations, Int. J. Mod. Phys. A 28 (2013) 1340009 [arXiv:1209.6304] [INSPIRE].ADSMathSciNetGoogle Scholar
  202. [202]
    A. Anokhina, A. Mironov, A. Morozov and A. Morozov, Racah coefficients and extended HOMFLY polynomials for all 5-, 6- and 7-strand braids, Nucl. Phys. B 868 (2013) 271 [arXiv:1207.0279] [INSPIRE].ADSMathSciNetGoogle Scholar
  203. [203]
    S. Gukov and M. Stosic, Homological algebra of knots and BPS states, arXiv:1112.0030 [INSPIRE].
  204. [204]
    P. Dunin-Barkowski, A. Sleptsov and A. Smirnov, Kontsevich integral for knots and Vassiliev invariants, Int. J. Mod. Phys. A 28 (2013) 1330025 [arXiv:1112.5406] [INSPIRE].ADSMathSciNetGoogle Scholar
  205. [205]
    P. Dunin-Barkowski, A. Sleptsov and A. Smirnov, Explicit computation of Drinfeld associator in the case of the fundamental representation of gl(N), J. Phys. A 45 (2012) 385204 [arXiv:1201.0025] [INSPIRE].ADSMathSciNetGoogle Scholar
  206. [206]
    A. Mironov, A. Morozov, S. Shakirov and A. Sleptsov, Interplay between MacDonald and Hall-Littlewood expansions of extended torus superpolynomials, JHEP 05 (2012) 070 [arXiv:1201.3339] [INSPIRE].ADSMathSciNetGoogle Scholar
  207. [207]
    A. Mironov, A. Morozov and S. Shakirov, Torus HOMFLY as the Hall-Littlewood polynomials, J. Phys. A 45 (2012) 355202 [arXiv:1203.0667] [INSPIRE].MathSciNetGoogle Scholar
  208. [208]
    S. Shakirov, Colored knot amplitudes and Hall-Littlewood polynomials, arXiv:1308.3838 [INSPIRE].
  209. [209]
    H. Itoyama, A. Mironov, A. Morozov and A. Morozov, HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations, JHEP 07 (2012) 131 [arXiv:1203.5978] [INSPIRE].ADSMathSciNetGoogle Scholar
  210. [210]
    Zodinmawia and P. Ramadevi, SU(N) quantum Racah coefficients & non-torus links, Nucl. Phys. B 870 (2013) 205 [arXiv:1107.3918] [INSPIRE].ADSMathSciNetGoogle Scholar
  211. [211]
    Zodinmawia and P. Ramadevi, Reformulated invariants for non-torus knots and links, arXiv:1209.1346 [INSPIRE].
  212. [212]
    S. Nawata, P. Ramadevi and Zodinmawia, Multiplicity-free quantum 6j-symbols for U q \( \left(\mathfrak{s}{\mathfrak{l}}_N\right) \), Lett. Math. Phys. 103 (2013) 1389 [arXiv:1302.5143] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  213. [213]
    S. Nawata, P. Ramadevi and Zodinmawia, Colored HOMFLY polynomials from Chern-Simons theory, J. Knot Theor. 22 (2013) 1350078 [arXiv:1302.5144] [INSPIRE].MathSciNetGoogle Scholar
  214. [214]
    S. Nawata, P. Ramadevi and P. Zodinmawia, Colored Kauffman homology and super-A-polynomials, JHEP 01 (2014) 126 [arXiv:1310.2240] [INSPIRE].MathSciNetGoogle Scholar
  215. [215]
    E. Gorsky, A. Oblomkov, J. Rasmussen and V. Shende, Torus knots and the rational DAHA, arXiv:1207.4523 [INSPIRE].
  216. [216]
    E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes, arXiv:1304.3328 [INSPIRE].
  217. [217]
    A. Mironov and A. Morozov, Equations on knot polynomials and 3d/5d duality, AIP Conf. Proc. 1483 (2012) 189 [arXiv:1208.2282] [INSPIRE].ADSGoogle Scholar
  218. [218]
    H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].ADSGoogle Scholar
  219. [219]
    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].ADSMathSciNetGoogle Scholar
  220. [220]
    A. Morozov, Special colored superpolynomials and their representation-dependence, JHEP 12 (2012) 116 [arXiv:1208.3544] [INSPIRE].ADSGoogle Scholar
  221. [221]
    A. Morozov, The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial, JETP Lett. 97 (2013) 171 [arXiv:1211.4596] [INSPIRE].ADSGoogle Scholar
  222. [222]
    A. Anokhina, A. Mironov, A. Morozov and A. Morozov, Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux, Adv. High Energy Phys. 2013 (2013) 931830 [arXiv:1304.1486] [INSPIRE].MathSciNetGoogle Scholar
  223. [223]
    A. Anokhina and A. Morozov, Cabling procedure for the colored HOMFLY polynomials, Teor. Mat. Fiz. 178 (2014) 3 [Teor. Mat. Fiz. 178 (2014) 3] [arXiv:1307.2216] [INSPIRE].
  224. [224]
    A. Anokhina, A. Mironov, A. Morozov and A. Morozov, Knot polynomials in the first non-symmetric representation, Nucl. Phys. B 882 (2014) 171 [arXiv:1211.6375] [INSPIRE].ADSMathSciNetGoogle Scholar
  225. [225]
    A. Mironov, A. Morozov and A. Sleptsov, Genus expansion of HOMFLY polynomials, Theor. Math. Phys. 177 (2013) 1435 [Teor. Mat. Fiz. 177 (2013) 179] [arXiv:1303.1015] [INSPIRE].
  226. [226]
    E. Gorsky, S. Gukov and M. Stosic, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].
  227. [227]
    A. Mironov, A. Morozov and A. Morozov, Evolution method anddifferential hierarchyof colored knot polynomials, AIP Conf. Proc. 1562 (2013) 123 [arXiv:1306.3197] [INSPIRE].ADSGoogle Scholar
  228. [228]
    S. Arthamonov, A. Mironov and A. Morozov, Differential hierarchy and additional grading of knot polynomials, Theor. Math. Phys. 179 (2014) 509 [arXiv:1306.5682] [INSPIRE].Google Scholar
  229. [229]
    M. Aganagic, T. Ekholm, L. Ng and C. Vafa, Topological strings, D-model and knot contact homology, arXiv:1304.5778 [INSPIRE].
  230. [230]
    S. Arthamonov, A. Mironov, A. Morozov and A. Morozov, Link polynomial calculus and the AENV conjecture, JHEP 04 (2014) 156 [arXiv:1309.7984] [INSPIRE].ADSGoogle Scholar
  231. [231]
    Q. Chen and N. Reshetikhin, Recursion formulas for HOMFLY and Kauffman invariants, arXiv:1401.1927.
  232. [232]
    Q. Chen, K. Liu, P. Peng and S. Zhu, Congruent skein relations for colored HOMFLY-PT invariants and colored Jones polynomials, arXiv:1402.3571 [INSPIRE].
  233. [233]
    I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, New York U.S.A. (1995).zbMATHGoogle Scholar
  234. [234]
    I. Cherednik, Double affine Hecke algebras, Cambridge University Press, Cambridge U.K. (2005).zbMATHGoogle Scholar
  235. [235]
    A. Morozov, Challenges of β-deformation, Theor. Math. Phys. 173 (2012) 1417 [Teor. Mat. Fiz. 173 (2012) 104] [arXiv:1201.4595] [INSPIRE].
  236. [236]
    L. Kauffman, State models and the Jones polynomials, Topology 26 (1987) 395.zbMATHMathSciNetGoogle Scholar
  237. [237]
    L. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989) 697.zbMATHMathSciNetGoogle Scholar
  238. [238]
    L. Kauffman and P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992) 59.zbMATHMathSciNetGoogle Scholar
  239. [239]
    The knot atlas webpage, http://katlas.org/.
  240. [240]
    I. Danilenko, Khovanov-Rozansky homologies and cabling, arXiv:1405.0884 [INSPIRE].
  241. [241]
    Table of link invariants webpage, http://www.indiana.edu/~linkinfo/.
  242. [242]
    M. Rosso and V.F.R. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theory Ramifications 2 (1993) 97.zbMATHMathSciNetGoogle Scholar
  243. [243]
    X.-S. Lin and H. Zheng, On the Hecke algebras and the colored HOMFLY polynomial, Trans. Amer. Math. Soc. 362 (2010) 1 [math.QA/0601267].zbMATHMathSciNetGoogle Scholar
  244. [244]
    S. Stevan, Chern-Simons invariants of torus links, Annales Henri Poincaré 11 (2010) 1201 [arXiv:1003.2861] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  245. [245]
    A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE].ADSzbMATHGoogle Scholar
  246. [246]
    S. Gukov, A. Iqbal, C. Kozcaz and C. Vafa, Link homologies and the refined topological vertex, Commun. Math. Phys. 298 (2010) 757 [arXiv:0705.1368] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  247. [247]
    A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, On genus expansion of superpolynomials, arXiv:1310.7622 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ITEPMoscowRussia

Personalised recommendations