Advertisement

N S-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes

  • David Andriot
  • André BetzEmail author
Open Access
Article

Abstract

In the first half of the paper, we study in details N S-branes, including the N S5-brane, the Kaluza-Klein monopole and the exotic \( {5}^{\frac{2}{2}} \)- or Q-brane, together with Bianchi identities for NSNS (non)-geometric fluxes. Four-dimensional Bianchi identities are generalized to ten dimensions with non-constant fluxes, and get corrected by a source term in presence of an N S-brane. The latter allows them to reduce to the expected Poisson equation. Without sources, our Bianchi identities are also recovered by squaring a nilpotent Spin(D, D) × ℝ+ Dirac operator. Generalized Geometry allows us in addition to express the equations of motion explicitly in terms of fluxes. In the second half, we perform a general analysis of ten-dimensional geometric backgrounds with non-geometric fluxes, in the context of β-supergravity. We determine a well-defined class of such vacua, that are non-geometric in standard supergravity: they involve β-transforms, a manifest symmetry of β-supergravity with isometries. We show as well that these vacua belong to a geometric T-duality orbit.

Keywords

Flux compactifications p-branes Supergravity Models String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Andriot, Non-geometric fluxes versus (non)-geometry, arXiv:1303.0251 [INSPIRE].
  5. [5]
    G. Aldazabal, D. Marqués and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, arXiv:1306.2643 [INSPIRE].
  7. [7]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095 [hep-th/0607015] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Micu, E. Palti and G. Tasinato, Towards Minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Palti, Low energy supersymmetry from non-geometry, JHEP 10 (2007) 011 [arXiv:0707.1595] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Blabäck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Damian, L.R. Díaz-Barrón, O. Loaiza-Brito and M. Sabido, Slow-roll inflation in non-geometric flux compactification, JHEP 06 (2013) 109 [arXiv:1302.0529] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Damian and O. Loaiza-Brito, More stable de Sitter vacua from S-dual nongeometric fluxes, Phys. Rev. D 88 (2013) 046008 [arXiv:1304.0792] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Catino, C.A. Scrucca and P. Smyth, Simple metastable de Sitter vacua in N = 2 gauged supergravity, JHEP 04 (2013) 056 [arXiv:1302.1754] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  29. [29]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi identities for non-geometric fluxesFrom quasi-Poisson structures to courant algebroids, Fortsch. Phys. 60 (2012) 1217 [arXiv:1205.1522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Villadoro and F. Zwirner, Beyond twisted tori, Phys. Lett. B 652 (2007) 118 [arXiv:0706.3049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, JHEP 08 (2007) 043 [arXiv:0705.3410] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Grange and S. Schäfer-Nameki, T-duality with H-flux: non-commutativity, T-folds and G × G structure, Nucl. Phys. B 770 (2007) 123 [hep-th/0609084] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Grange and S. Schäfer-Nameki, Towards mirror symmetry a la SYZ for generalized Calabi-Yau manifolds, JHEP 10 (2007) 052 [arXiv:0708.2392] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  41. [41]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  42. [42]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  47. [47]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    N. Kaloper and R.C. Myers, The odd story of massive supergravity, JHEP 05 (1999) 010 [hep-th/9901045] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    G. Dall’Agata and S. Ferrara, Gauged supergravity algebras from twisted tori compactifications with fluxes, Nucl. Phys. B 717 (2005) 223 [hep-th/0502066] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    G. Aldazabal, P.G. Cámara and J.A. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Palatini-Lovelock-Cartan gravityBianchi identities for stringy fluxes, Class. Quant. Grav. 29 (2012) 135004 [arXiv:1202.4934] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
  57. [57]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of exceptional field theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFTs, JHEP 10 (2013) 057 [arXiv:1307.0999] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Villadoro and F. Zwirner, On general flux backgrounds with localized sources, JHEP 11 (2007) 082 [arXiv:0710.2551] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    D. Brace, B. Morariu and B. Zumino, T duality and Ramond-Ramond backgrounds in the matrix model, Nucl. Phys. B 549 (1999) 181 [hep-th/9811213] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    M. Fukuma, T. Oota and H. Tanaka, Comments on T dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.F. Hassan, SO(d, d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167 [Erratum ibid. B 353 (1991) 565] [INSPIRE].
  70. [70]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    C. Nölle, Instantons, five-branes and fractional strings, arXiv:1207.7268 [INSPIRE].
  72. [72]
    K.-P. Gemmer, A.S. Haupt, O. Lechtenfeld, C. Nölle and A.D. Popov, Heterotic string plus five-brane systems with asymptotic AdS3, Adv. Theor. Math. Phys. 17 (2013) 771 [arXiv:1202.5046] [INSPIRE].CrossRefzbMATHGoogle Scholar
  73. [73]
    D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    R. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    T. Kimura and S. Sasaki, Gauged linear σ-model for exotic five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  77. [77]
    T. Kimura and S. Sasaki, Worldsheet instanton corrections to \( {5}^{\frac{2}{2}} \) -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    T. Kimura and S. Sasaki, Worldsheet description of exotic five-brane with two gauged isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Jensen, The KK-monopole/NS5-brane in doubled geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J.P. Gauntlett, J.A. Harvey and J.T. Liu, Magnetic monopoles in string theory, Nucl. Phys. B 409 (1993) 363 [hep-th/9211056] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  82. [82]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  83. [83]
    J. Mourad, Anomalies of the SO(32) five-brane and their cancellation, Nucl. Phys. B 512 (1998) 199 [hep-th/9709012] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  84. [84]
    P. Koerber and L. Martucci, Deformations of calibrated D-branes in flux generalized complex manifolds, JHEP 12 (2006) 062 [hep-th/0610044] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  85. [85]
    M.B. Schulz, Superstring orientifolds with torsion: O5 orientifolds of torus fibrations and their massless spectra, Fortsch. Phys. 52 (2004) 963 [hep-th/0406001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    E. Plauschinn, T-duality revisited, JHEP 01 (2014) 131 [arXiv:1310.4194] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  87. [87]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of non-geometric fivebranes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  89. [89]
    D.C. Thompson, T-duality invariant approaches to string theory, arXiv:1012.4393 [INSPIRE].
  90. [90]
    J. Maharana, The worldsheet perspective of T-duality symmetry in string theory, Int. J. Mod. Phys. A 28 (2013) 1330011 [arXiv:1302.1719] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  91. [91]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  92. [92]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  93. [93]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  94. [94]
    M. Nakahara, Geometry, topology and physics, 2nd edition, Graduate Student Series in Physics, IOP, U.K. (2003).CrossRefGoogle Scholar
  95. [95]
    E. Eyras, B. Janssen and Y. Lozano, Five-branes, K K monopoles and T duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  96. [96]
    M.R. Garousi, S-duality of S-matrix, JHEP 11 (2011) 016 [arXiv:1106.1714] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  97. [97]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, arXiv:1310.4196 [INSPIRE].
  98. [98]
    D. Andriot and A. Betz, work in progress.Google Scholar
  99. [99]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  100. [100]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  101. [101]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  102. [102]
    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marqués and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  103. [103]
    R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative deformations of geometry in double field theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    F. Hassler and D. Lüst, Consistent compactification of double field theory on non-geometric flux backgrounds, JHEP 05 (2014) 085 [arXiv:1401.5068] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdam-GolmGermany
  2. 2.Institut für MathematikHumboldt-Universität zu Berlin, IRIS-AdlershofBerlinGermany
  3. 3.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations