Rational F-theory GUTs without exotics

  • Sven Krippendorf
  • Damián Kaloni Mayorga Peña
  • Paul-Konstantin Oehlmann
  • Fabian Ruehle
Open Access
Article

Abstract

We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

Keywords

Strings and branes phenomenology 

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic-F theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryII: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.-M. Chen, J. Knapp, M. Kreuzer and C. Mayrhofer, Global SO(10) F-theory GUTs, JHEP 10 (2010) 057 [arXiv:1005.5735] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    I. Antoniadis and G.K. Leontaris, Building SO(10) models from F-theory, JHEP 08 (2012) 001 [arXiv:1205.6930] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) singularities, JHEP 12 (2012) 092 [arXiv:1206.5090] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    J.C. Callaghan and S.F. King, E6 models from F-theory, JHEP 04 (2013) 034 [arXiv:1210.6913] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    T.W. Grimm, S. Krause and T. Weigand, F-theory GUT vacua on compact Calabi-Yau fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1)PQ, JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.J. Dolan, J. Marsano and S. Schäfer-Nameki, Unification and phenomenology of F-theory GUTs with U(1)PQ, JHEP 12 (2011) 032 [arXiv:1109.4958] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1) symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290] [INSPIRE].ADSGoogle Scholar
  20. [20]
    E. Dudas and E. Palti, Froggatt-Nielsen models from E 8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    S.F. King, G.K. Leontaris and G.G. Ross, Family symmetries in F-theory GUTs, Nucl. Phys. B 838 (2010) 119 [arXiv:1005.1025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.C. Callaghan, S.F. King, G.K. Leontaris and G.G. Ross, Towards a realistic F-theory GUT, JHEP 04 (2012) 094 [arXiv:1109.1399] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Marsano, Hypercharge flux, exotics and anomaly cancellation in F-theory GUTs, Phys. Rev. Lett. 106 (2011) 081601 [arXiv:1011.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Palti, A note on hypercharge flux, anomalies and U(1)s in F-theory GUTs, Phys. Rev. D 87 (2013) 085036 [arXiv:1209.4421] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    V. Braun, T.W. Grimm and J. Keitel, New global F-theory GUTs with U(1) symmetries, JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors, JHEP 04 (2014) 010 [arXiv:1306.3987] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5) tops with multiple U(1)s in F-theory, Nucl. Phys. B 882 (2014) 1 [arXiv:1307.2902] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: addendum, JHEP 12 (2013) 056 [arXiv:1307.6425] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Mayrhofer, E. Palti and T. Weigand, Hypercharge Flux in IIB and F-theory: Anomalies and Gauge Coupling Unification, JHEP 09 (2013) 082 [arXiv:1303.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press, Cambridge (2012).Google Scholar
  41. [41]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    K. Kodaira, On compact analytic surfaces, Ann. Math. 77 (1963) 563.CrossRefMATHGoogle Scholar
  45. [45]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tates algorithm and F-theory, JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys. 17 (2013) 1195 [arXiv:1107.0733] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and spectral covers from resolved Calabi-Yaus, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B. Andreas, G. Curio and A. Klemm, Towards the standard model spectrum from elliptic Calabi-Yau, Int. J. Mod. Phys. A 19 (2004) 1987 [hep-th/9903052] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    J.P. Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics, Vieweg and Sohn Wiesbaden, Germany (1990).Google Scholar
  51. [51]
    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra, Commun. Math. Phys. 185 (1997) 495 [hep-th/9512204] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    C. Lawrie and S. Schäfer-Nameki, The Tate form on steroids: resolution and higher codimension fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    T.W. Grimm and H. Hayashi, F-theory fluxes, chirality and Chern-Simons theories, JHEP 03 (2012) 027 [arXiv:1111.1232] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    M. Kuntzler and S. Schäfer-Nameki, G-flux and spectral divisors, JHEP 11 (2012) 025 [arXiv:1205.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and abelian gauge symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    C. Lüdeling, H.P. Nilles and C.C. Stephan, The potential fate of local model building, Phys. Rev. D 83 (2011) 086008 [arXiv:1101.3346] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Marsano, H. Clemens, T. Pantev, S. Raby and H.-H. Tseng, A global SU(5) F-theory model with Wilson line breaking, JHEP 01 (2013) 150 [arXiv:1206.6132] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Cvetič, I. Garcia Etxebarria and J. Halverson, Three looks at instantons in F-theoryNew insights from anomaly inflow, string junctions and heterotic duality, JHEP 11 (2011) 101 [arXiv:1107.2388] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Kerstan and T. Weigand, Fluxed M 5-instantons in F-theory, Nucl. Phys. B 864 (2012) 597 [arXiv:1205.4720] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, An instanton toolbox for F-theory model building, JHEP 01 (2010) 128 [arXiv:0808.2450] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G.G. Ross, Wilson line breaking and gauge coupling unification, hep-ph/0411057 [INSPIRE].
  67. [67]
    J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
  69. [69]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    J.P. Conlon and E. Palti, Aspects of flavour and supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 1307 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  74. [74]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    I. Hinchliffe and T. Kaeding, B + L violating couplings in the minimal supersymmetric standard model, Phys. Rev. D 47 (1993) 279 [INSPIRE].ADSGoogle Scholar
  76. [76]
    V. Ben-Hamo and Y. Nir, Implications of horizontal symmetries on baryon number violation in supersymmetric models, Phys. Lett. B 339 (1994) 77 [hep-ph/9408315] [INSPIRE].
  77. [77]
    H.K. Dreiner and M. Thormeier, Supersymmetric Froggatt-Nielsen models with baryon and lepton number violation, Phys. Rev. D 69 (2004) 053002 [hep-ph/0305270] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Sven Krippendorf
    • 1
  • Damián Kaloni Mayorga Peña
    • 1
  • Paul-Konstantin Oehlmann
    • 1
  • Fabian Ruehle
    • 2
  1. 1.Bethe Center for Theoretical PhysicsPhysikalisches Institut der Universität BonnBonnGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations