Advertisement

Relativistic classical integrable tops and quantum R-matrices

  • A. Levin
  • M. Olshanetsky
  • A. ZotovEmail author
Open Access
Article

Abstract

We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical R-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described as multidimensional Euler tops, and the inertia tensors are written in terms of the quantum and classical R-matrices. A particular case of gl N system is gauge equivalent to the N-particle RS model while a generic top is related to the spin generalization of the RS model. The simple relation between quantum R-matrices and classical Lax operators is exploited in two ways. In the elliptic case we use the Belavin’s quantum R-matrix to describe the relativistic classical tops. Also by the passage to the noncommutative torus we study the large N limit corresponding to the relativistic version of the nonlocal 2d elliptic hydrodynamics. Conversely, in the rational case we obtain a new gl N quantum rational non-dynamical R-matrix via the relativistic top, which we get in a different way — using the factorized form of the RS Lax operator and the classical Symplectic Hecke (gauge) transformation. In particular case of gl2 the quantum rational R-matrix is 11-vertex. It was previously found by Cherednik. At last, we describe the integrable spin chains and Gaudin models related to the obtained R-matrix.

Keywords

Integrable Equations in Physics Quantum Groups Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, quantum Benjamin-Ono equation and Calogero model, Phys. Rev. Lett. 95 (2005) 076402 [cond-mat/0504041] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Bonelli, A. Sciarappa, A. Tanzini and P. Vasko, Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) Quantum Intermediate Long Wave Hydrodynamics, arXiv:1403.6454 [INSPIRE].
  3. [3]
    A. Alexandrov, S. Leurent, Z. Tsuboi and A. Zabrodin, The master T-operator for the Gaudin model and the KP hierarchy, Nucl. Phys. B 883 (2014) 173 [arXiv:1306.1111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Zabrodin, The Master T-Operator for Inhomogeneous XXX Spin Chain and mKP Hierarchy, SIGMA 10 (2014) 006 [arXiv:1310.6988] [INSPIRE].Google Scholar
  5. [5]
    G. Aminov, S. Arthamonov, A.M. Levin, M.A. Olshanetsky and A.V. Zotov, Painleve Field Theory, arXiv:1306.3265 [INSPIRE].
  6. [6]
    G. Aminov, S. Arthamonov, A.V. Smirnov and A.V. Zotov, Rational Top and its Classical R-matrix, arXiv:1402.3189 [INSPIRE].
  7. [7]
    A. Antonov, K. Hasegawa and A. Zabrodin, On trigonometric intertwining vectors and nondynamical R matrix for the Ruijsenaars model, Nucl. Phys. B 503 (1997) 747 [hep-th/9704074] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    V.I. Arnold, Sur la gomtrie diffrentielle des groupes de Lie de dimension infinie et ses applications lhydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 316 [http://www.ams.org/mathscinet-getitem?mr=0202082].Google Scholar
  9. [9]
    V.I. Arnold, The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid, Uspekhi Mat. Nauk. 24 (1969) 225 [http://www.ams.org/mathscinet-getitem?mr=277163].Google Scholar
  10. [10]
    V.I. Arnold and B.A. Khesin, Topological methods in hydrodynamics, Springer (1998).Google Scholar
  11. [11]
    G.E. Arutyunov and S.A. Frolov, On Hamiltonian structure of the spin Ruijsenaars-Schneider model, J. Phys. A 31 (1998) 4203 [hep-th/9703119] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    J. Avan and G. Rollet, The Classical r matrix for the relativistic Ruijsenaars-Schneider system, Phys. Lett. 212 (1996) 50 [hep-th/9510166] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    F.W. Nijhoff, V.B. Kuznetsov, E.K. Sklyanin and O. Ragnisco, Dynamical r matrix for the elliptic Ruijsenaars-Schneider system, J. Phys. A 29 (1996) L333 [solv-int/9603006] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    O. Babelon and C.M. Viallet, Hamiltonian Structures and Lax Equations, Phys. Lett. B 237 (1990) 411 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    A.A. Belavin, Dynamical Symmetry of Integrable Quantum Systems, Nucl. Phys. B 180 (1981) 189 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A.A. Belavin and V.G. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982) 159.CrossRefMathSciNetGoogle Scholar
  18. [18]
    H.W. Braden, V.A. Dolgushev, M.A. Olshanetsky and A.V. Zotov, Classical R matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions, J. Phys. A 36 (2003) 6979 [hep-th/0301121] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    F. Calogero, Exactly Solvable One-Dimensional Many Body Problems, Lett. Nuovo Cim. 13 (1975) 411 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  20. [20]
    F. Calogero, On a Functional Equation Connected with Integrable Many Body Problems, Lett. Nuovo Cim. 16 (1976) 77 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  21. [21]
    J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975) 1.ADSCrossRefGoogle Scholar
  22. [22]
    M.A. Olshanetsky and A.M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71 (1981) 313 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    Yu. Chernyakov, A. Levin, M. Olshanetsky and A. Zotov, Quadratic algebras related to elliptic curves, Theor. Math. Phys. 156 (2008) 1103 [arXiv:0710.1072.]zbMATHGoogle Scholar
  24. [24]
    L. De Broglie, D. Bohm, P. Hillion, F. Halbwachs, T. Takabayasi and J.-P. Vigier, Rotator model of elementary particles considered as relativistic extended structures in Minkowski space. Phys. Rev. 129 (1962) 438.CrossRefGoogle Scholar
  25. [25]
    A.J. Hanson and T. Regge, The Relativistic Spherical Top, Annals Phys. 87 (1974) 498 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    T. Takabayasi, Theory of relativistic top and electromagnetic interaction, Prog. Theor. Phys. 67 (1982) 357 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    R. Endelman and T.J. Hodges, Generalized Jordanian R-matrices of Cremmer-Gervais type, Lett. Math. Phys. 52 (2000) 225.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    R. Endelman and T.J. Hodges, Quantization of certain skew-symmetric solutions of the classical Yang-Baxter equation, math.QA/0003066.
  29. [29]
    R. Endelman and T.J. Hodges, Degenerations and Representations of Twisted Shibukawa-Ueno R-Operators, Lett. Math. Phys. 68 (2004) 151 [math.QA/0402319].
  30. [30]
    L. Fehér and B.G. Pusztai, The non-dynamical r-matrices of the degenerate Calogero-Moser models, J. Phys. A 33 (2000) 7739 [math-ph/0005021].ADSGoogle Scholar
  31. [31]
    V.V. Fock and A. Marshakov, A note on quantum qroups and relativistic toda theory, Nucl. Phys. B Proc. Suppl. 56 (1997) 208.ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Marshakov, Lie Groups, Cluster Variables and Integrable Systems, J. Geom. Phys. 67 (2013) 16 [arXiv:1207.1869] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    A. Gorsky, A. Zabrodin and A.V. Zotov, Spectrum of Quantum Transfer Matrices via Classical Many-Body Systems, JHEP 01 (2014) 070 [arXiv:1310.6958] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995) 582 [hep-th/9401017] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    G.E. Arutyunov, S.A. Frolov and P.B. Medvedev, Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group, J. Math. Phys. 38 (1997) 5682 [hep-th/9608013] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    K. Hasegawa, Ruijsenaarscommuting difference operators as commuting transfer matrices, Commun. Math. Phys. 187 (1997) 289 [q-alg/9512029].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    B. Khesin, A.M. Levin and M.A. Olshanetsky, Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus, Commun. Math. Phys. 250 (2004) 581 [nlin/0309017].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    I. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980) 282.CrossRefGoogle Scholar
  39. [39]
    I. Krichever and A. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, nonAbelian 2 − D Toda chain and representations of Sklyanin algebra, Russ. Math. Surv. 50 (1995) 1101 [hep-th/9505039] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    P.P. Kulish and E.K. Sklyanin, Quantum inverse scattering method and the Heisenberg ferromagnet, Phys. Lett. A 70 (1979) 461 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method. 1, Theor. Math. Phys. 40 (1980) 688 [INSPIRE].zbMATHGoogle Scholar
  42. [42]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, proceedings of Les-Houches summer school 64, A. Connes, K. Gawedzki and J. Zinn-Justin eds., North Holland (1998) [hep-th/9605187] [INSPIRE].
  43. [43]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics (1997).Google Scholar
  44. [44]
    M. Gaudin, La Fonction dOnde de Bethe, Masson (1983), Paris, (in French) Mir, (1987) Moscow (Russian transl.)Google Scholar
  45. [45]
    N.A. Slavnov, The algebraic Bethe ansatz and quantum integrable systems, http://dx.doi.org/10.1070/RM2007v062n04ABEH004430 Russ. Math. Surv. 62 (2007) 727.
  46. [46]
    P.P. Kulish and A.A. Stolin, Deformed Yangians and Integrable Models, Czech. Jour. Phys. 47 (1997) 1207 [q-alg/9708024].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    A.M. Levin, M.A. Olshanetsky and A.V. Zotov, Hitchin systems, symplectic Hecke correspondence and two-dimensional version, Commun. Math. Phys. 236 (2003) 93 [nlin/0110045].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    A.M. Levin, M.A. Olshanetsky, A.V. Smirnov and A.V. Zotov, Characteristic Classes and Integrable Systems. General Construction, arXiv:1006.0702 [INSPIRE].
  49. [49]
    A.M. Levin, M.A. Olshanetsky, A.V. Smirnov and A.V. Zotov, Characteristic Classes and Integrable Systems for Simple Lie Groups, arXiv:1007.4127 [INSPIRE].
  50. [50]
    A.M. Levin, M.A. Olshanetsky, A.V. Smirnov and A.V. Zotov, Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-trivial Bundles, SIGMA 8 (2012) 095 [arXiv:1207.4386] [INSPIRE].MathSciNetGoogle Scholar
  51. [51]
    A.M. Levin, M.A. Olshanetsky and A.V. Zotov, Classification of Isomonodromy Problems on Elliptic Curves, arXiv:1311.4498 [INSPIRE].
  52. [52]
    A.M. Levin, M.A. Olshanetsky, A.V. Smirnov and A.V. Zotov, Characteristic Classes of SL(N, ℂ)-Bundles and Quantum Dynamical Elliptic R-Matrices, J. Phys. A 46 (2013) 035201 [arXiv:1208.5750] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    A.M. Levin and, A.V. Zotov, Integrable model of interacting elliptic tops, Theor. Math. Phys. 146 (2006) 55.MathSciNetGoogle Scholar
  54. [54]
    A.M. Levin, M.A. Olshanetsky and A.V. Zotov, Classical Integrable Systems and Soliton Equations related to Eleven-Vertex R-Matrix, in preparation (2014).Google Scholar
  55. [55]
    A. Mironov, A. Morozov, Y. Zenkevich and A.V. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A.V. Zotov, Spectral Duality Between Heisenberg Chain and Gaudin Model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A.V. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].
  61. [61]
    N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, arXiv:1405.6046 [INSPIRE].
  63. [63]
    A.V. Odesskii and B.L. Feigin, Sklyanin elliptic algebras, Funct. Anal. Appl. 23 (1989) 207.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    M.A. Olshanetsky, Elliptic hydrodynamics and quadratic algebras of vector fields on a torus, Theor. Math. Phys. 150 (2007) 301.CrossRefzbMATHGoogle Scholar
  65. [65]
    V. Pasquier, Etiology of IRF Models, Commun. Math. Phys. 118 (1988) 355 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    M. Jimbo, T. Miwa and M. Okado, Local state probabilities of solvable lattice models: An A n(1) family, Nucl. Phys. B 300 (1988) 74.ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    E. Rains, S. Ruijsenaars, Difference operators of Sklyanin and van Diejen type, Commun. Math. Phys. 320 (2013) 851 [arXiv:1203.0042].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. [68]
    H. Rosengren, Sklyanin invariant integration, Intern. Math. Res. Not. 60 (2004) 3207 [math.QA/0405072].CrossRefMathSciNetGoogle Scholar
  69. [69]
    S.N.M. Ruijsenaars, The Aharonov-Bohm Effect and Scattering Theory, Annals Phys. 146 (1983) 1 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    S.N.M. Ruijsenaars, Complete Integrability of Relativistic Calogero-moser Systems and Elliptic Function Identities, Commun. Math. Phys. 110 (1987) 191 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  71. [71]
    S.N.M. Ruijsenaars, Relativistic Toda systems, Commun. Math. Phys. 133 (1990) 217.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl. 16 (1982) 263 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  73. [72]
    E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras, Funct. Anal. Appl. 17 (1983) 273 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  74. [73]
    A.V. Smirnov, Degenerate Sklyanin algebras, Cent. Eur. J. Phys. 8 (2010) 542 [arXiv:0903.1466].CrossRefGoogle Scholar
  75. [74]
    A.V. Smirnov and A.V. Zotov, Modifications of Bundles, Elliptic Integrable Systems and Related Problems, Theor. Math. Phys. 177 (2013) 1281.Google Scholar
  76. [75]
    I.V. Cherednik, On a method of constructing factorized S matrices in elementary functions, Theor. Math. Phys. 43 (1980) 356.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.NRU HSE, Department of MathematicsMoscowRussia
  2. 2.ITEPMoscowRussia
  3. 3.MIPTDolgoprudnyRussia
  4. 4.Steklov Mathematical Institute RASMoscowRussia

Personalised recommendations