From Tevatron’s top and lepton-based asymmetries to the LHC

  • Adrián Carmona
  • Mikael Chala
  • Adam Falkowski
  • Sara Khatibi
  • Mojtaba Mohammadi Najafabadi
  • Gilad Perez
  • José Santiago
Open Access
Article

Abstract

We define a lepton-based asymmetry in semi-leptonic \( t\overline{t} \) production at the LHC. We show that the ratio of this lepton-based asymmetry and the \( t\overline{t} \) charge asymmetry, measured as a function of the lepton transverse momentum or the \( t\overline{t} \) invariant mass is a robust observable in the Standard Model. It is stable against higher order corrections and mis-modeling effects. We show that this ratio can be also a powerful discriminant among different models of new physics and between them and the Standard Model. Finally, we show that a related ratio defined at the Tevatron is also robust as a function of the \( t\overline{t} \) invariant mass.

Keywords

Beyond Standard Model Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy Quarks Above the Top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra Visible Warped Model from Flavor Triviality and Improved Naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary Phenomenology from Warped Flavor Triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Atre, M. Chala and J. Santiago, Searches for New Vector Like Quarks: Higgs Channels, JHEP 05 (2013) 099 [arXiv:1302.0270] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Delaunay, C. Grojean and G. Perez, Modified Higgs Physics from Composite Light Flavors, JHEP 09 (2013) 090 [arXiv:1303.5701] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Da Rold, C. Delaunay, C. Grojean and G. Perez, Up Asymmetries From Exhilarated Composite Flavor Structures, JHEP 02 (2013) 149 [arXiv:1208.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.T. Bowen, S.D. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [INSPIRE].ADSGoogle Scholar
  12. [12]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [INSPIRE].ADSGoogle Scholar
  14. [14]
    CDF collaboration, T. Aaltonen et al., Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W. Bernreuther and Z.-G. Si, Top quark and leptonic charge asymmetries for the Tevatron and LHC, Phys. Rev. D 86 (2012) 034026 [arXiv:1205.6580] [INSPIRE].ADSGoogle Scholar
  17. [17]
    CDF collaboration, T.A. Aaltonen et al., Measurement of the leptonic asymmetry in \( t\overline{t} \) events produced in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 88 (2013) 072003 [arXiv:1308.1120] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D0 collaboration, Forward-backward asymmetry in the distribution of leptons in \( t\overline{t} \) events, D0 Note 6381-CONF.Google Scholar
  19. [19]
    CDF collaboration, Measurement of the Leptonic Forward-Backward Asymmetry of tt Production and Decay in the Dilepton Final State and Combination of Charge Weighted Leptonic AFB at CDF, CDF Note 11035.Google Scholar
  20. [20]
    D0 collaboration, V.M. Abazov et al., Measurement of the asymmetry in angular distributions of leptons produced in dilepton \( t\overline{t} \) final states in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 88 (2013) 112002 [arXiv:1308.6690] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Berge and S. Westhoff, Top-Quark Charge Asymmetry Goes Forward: Two New Observables for Hadron Colliders, JHEP 07 (2013) 179 [arXiv:1305.3272] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Falkowski, M.L. Mangano, A. Martin, G. Perez and J. Winter, Data driving the top quark forward-backward asymmetry with a lepton-based handle, Phys. Rev. D 87 (2013) 034039 [arXiv:1212.4003] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Falkowski, G. Perez and M. Schmaltz, Spinning the Top, Phys. Rev. D 87 (2013) 034041 [arXiv:1110.3796] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, J.-H. Yu and H. Zhang, Dynamical Origin of the Correlation between the Asymmetries \( {A}_{F\; B}^t \) and \( {A}_{F\; B}^{\ell } \) , arXiv:1111.3641 [INSPIRE].
  25. [25]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, J.-H. Yu and H. Zhang, The Top Quark Production Asymmetries \( {A}_{F\; B}^t \) and \( {A}_{F\; B}^{\ell } \) , Phys. Rev. Lett. 108 (2012) 072002 [arXiv:1201.1790] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E.L. Berger, Q.-H. Cao, C.-R. Chen and H. Zhang, Interpretations and implications of the top quark rapidity asymmetries \( {A}_{F\; B}^t \) and \( {A}_{F\; B}^{\ell } \) , Phys. Rev. D 88 (2013) 014033 [arXiv:1209.4899] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Baumgart and B. Tweedie, Transverse Top Quark Polarization and the \( t\overline{t} \) Forward-Backward Asymmetry, JHEP 08 (2013) 072 [arXiv:1303.1200] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC Signals from Warped Extra Dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping \( t\overline{t} \) Asymmetries at the Tevatron and the LHC, Phys. Rev. D 86 (2012) 054022 [arXiv:1205.4721] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Drobnak, A.L. Kagan, J.F. Kamenik, G. Perez and J. Zupan, Forward Tevatron Tops and Backward LHC Tops with Associates, Phys. Rev. D 86 (2012) 094040 [arXiv:1209.4872] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.A. Aguilar-Saavedra and A. Juste, Collider-independent t tbar forward-backward asymmetries, Phys. Rev. Lett. 109 (2012) 211804 [arXiv:1205.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    E. Alvarez and E.C. Leskow, A charged Zto conciliate the apparent disagreement between top-antitop Tevatron forward-backward asymmetry and LHC charge asymmetry, Phys. Rev. D 86 (2012) 114034 [arXiv:1209.4354] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ATLAS collaboration, Measurement of the top quark pair production charge asymmetry in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-078 (2013).
  34. [34]
    CMS collaboration, Inclusive and differential measurements of the \( t\overline{t} \) charge asymmetry in proton-proton collisions at 7 TeV, Phys. Lett. B 717 (2012) 129 [arXiv:1207.0065] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CMS collaboration, Measurement of the ttbar charge asymmetry with lepton+jets events at 8 TeV, CMS-PAS-TOP-12-033 (2013).
  36. [36]
    ATLAS collaboration, Measurement of the charge asymmetry in dileptonic decay of top quark pairs in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2012-057 (2012).
  37. [37]
    CMS collaboration, Top charge asymmetry measurement in dileptons at 7 TeV, CMS-PAS-TOP-12-010 (2012).
  38. [38]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Sjöstrand, L. Lönnblad, S. Mrenna and P.Z. Skands, PYTHIA 6.3 physics and manual, hep-ph/0308153 [INSPIRE].
  45. [45]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline{t} \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: Constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Fajfer, J.F. Kamenik and B. Melic, Discerning New Physics in Top-Antitop Production using Top Spin Observables at Hadron Colliders, JHEP 08 (2012) 114 [arXiv:1205.0264] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CDF and D0 collaborations, T.A. Aaltonen et al., Combination of measurements of the top-quark pair production cross section from the Tevatron Collider, Phys. Rev. D 89 (2014) 072001 [arXiv:1309.7570] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \( O\left({\alpha}_S^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\overline{t} \) Differential Cross Section d sigma/dM( \( t\overline{t} \) ) in \( p\overline{p} \) Collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D0 collaboration, Measurement of the differential \( t\overline{t} \) production cross section in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV with the D0 Detector, D0 Conference note 6379 (2013).Google Scholar
  52. [52]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    L.J. Hall and A.E. Nelson, Heavy Gluons and Monojets, Phys. Lett. B 153 (1985) 430 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P.H. Frampton and S.L. Glashow, Chiral Color: An Alternative to the Standard Model, Phys. Lett. B 190 (1987) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Marques Tavares and M. Schmaltz, Explaining the \( t\overline{t} \) asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011) 228 [arXiv:1107.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.A. Aguilar-Saavedra and J. Santiago, Four tops and the \( t\overline{t} \) forward-backward asymmetry, Phys. Rev. D 85 (2012) 034021 [arXiv:1112.3778] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Gross, G. Marques Tavares, M. Schmaltz and C. Spethmann, Light axigluon explanation of the Tevatron \( t\overline{t} \) asymmetry and multijet signals at the LHC, Phys. Rev. D 87 (2013) 014004 [arXiv:1209.6375] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Gresham, J. Shelton and K.M. Zurek, Open windows for a light axigluon explanation of the top forward-backward asymmetry, JHEP 03 (2013) 008 [arXiv:1212.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: Constraints on extended models and implications for the t tbar asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D0 collaboration, Forward-backward asymmetry in the distribution of leptons in \( t\overline{t} \) events, D0 Conference note 6394 (2013).Google Scholar
  66. [66]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Adrián Carmona
    • 1
  • Mikael Chala
    • 2
  • Adam Falkowski
    • 3
  • Sara Khatibi
    • 4
  • Mojtaba Mohammadi Najafabadi
    • 4
  • Gilad Perez
    • 5
    • 6
  • José Santiago
    • 2
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  3. 3.Laboratoire de Physique Théorique, CNRS - UMR 8627Orsay CedexFrance
  4. 4.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  5. 5.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  6. 6.PH-TH DepartmentCERNGeneva 23Switzerland

Personalised recommendations