Light Higgs and vector-like quarks without prejudice

  • Svjetlana Fajfer
  • Admir Greljo
  • Jernej F. KamenikEmail author
  • Ivana Mustać


Light vector-like quarks with non-renormalizable couplings to the Higgs are a common feature of models trying to address the electroweak (EW) hierarchy problem by treating the Higgs as a pseudo-goldstone boson of a global (approximate) symmetry. We systematically investigate the implications of the leading dimension five operators on Higgs phenomenology in presence of dynamical up- and down-type weak singlet as well as weak doublet vector-like quarks. After taking into account constraints from precision EW and flavour observables we show that contrary to the renormalizable models, significant modifications of Higgs properties are still possible and could shed light on the role of vector-like quarks in solutions to the EW hierarchy problem. We also briefly discuss implications of higher dimensional operators for direct vector-like quark searches at the LHC.


Higgs Physics Beyond Standard Model 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].ADSGoogle Scholar
  5. [5]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].ADSGoogle Scholar
  11. [11]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Vecchi, The natural composite Higgs, arXiv:1304.4579 [INSPIRE].
  15. [15]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, arXiv:1303.3876 [INSPIRE].
  17. [17]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Carmona and F. Goertz, Custodial leptons and Higgs decays, arXiv:1301.5856 [INSPIRE].
  20. [20]
    J.A. Aguilar-Saavedra, Effects of mixing with quark singlets, Phys. Rev. D 67 (2003) 035003 [Erratum ibid. D 69 (2004) 099901] [hep-ph/0210112] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.J. Dowdall, C.T.H. Davies, G.P. Lepage and C. McNeile, V us from π and K decay constants in full lattice QCD with physical u, d, s and c quarks, arXiv:1303.1670 [INSPIRE].
  22. [22]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  23. [23]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Golowich, J. Hewett, S. Pakvasa and A.A. Petrov, Implications of D 0 - \( {{\overline{\mathrm{D}}}^0} \) mixing for new physics, Phys. Rev. D 76 (2007) 095009 [arXiv:0705.3650] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  26. [26]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Interplay of tbW decay and B q meson mixing in minimal flavor violating models, Phys. Lett. B 701 (2011) 234 [arXiv:1102.4347] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Probing anomalous tWb interactions with rare B decays, Nucl. Phys. B 855 (2012) 82 [arXiv:1109.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  31. [31]
    T.P. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].ADSGoogle Scholar
  32. [32]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  35. [35]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  36. [36]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    Tevatron New Physics Higgs Working Group, CDF and D0 collaborations, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].
  39. [39]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Higgs couplings beyond the standard model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  44. [44]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  45. [45]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  46. [46]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  47. [47]
    CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  48. [48]
    C. Ochando, Study of Higgs production in bosonic decay channels at CMS, talk given at the Rencontres de Moriond. QCD and High Energy Interactions, La Thuile Italy, 9–16 Mar 2013.Google Scholar
  49. [49]
    CMS collaboration, Search for the standard-model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004 (2013).
  50. [50]
    M. Chen, Combination and interpretation of Scalar Boson search results from CMS, talk given at the Rencontres de Moriond. EW Interactions and Unified Theories, La Thuile Italy, 2–9 Mar 2013.Google Scholar
  51. [51]
    V. Dutta, Study of BEH production in fermionic decay channels in CMS, talk given at the Rencontres de Moriond. EW Interactions and Unified Theories, La Thuile Italy, 2–9 Mar 2013.Google Scholar
  52. [52]
    C. Delaunay, C. Grojean and G. Perez, Modified Higgs physics from composite light flavors, arXiv:1303.5701 [INSPIRE].
  53. [53]
    J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018 (2013).
  57. [57]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Garberson and T. Golling, Generalization of exotic quark searches, arXiv:1301.4454 [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 012007 [arXiv:1202.3389] [INSPIRE].ADSGoogle Scholar
  60. [60]
    N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].ADSGoogle Scholar
  62. [62]
    CMS collaboration, Measurement of the ratio B(tWb)/B(tW q), CMS-PAS-TOP-12-035 (2013).
  63. [63]
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].ADSGoogle Scholar
  64. [64]
    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 717 (2012) 330 [arXiv:1205.3130] [INSPIRE].Google Scholar
  65. [65]
    CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 139 [arXiv:1206.0257] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Fischer, S. Groote, J.G. Korner and M.C. Mauser, Longitudinal, transverse plus and transverse minus W bosons in unpolarized top quark decays at O(α s), Phys. Rev. D 63 (2001) 031501 [hep-ph/0011075] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J. Drobnak, S. Fajfer and J.F. Kamenik, New physics in tbW decay at next-to-leading order in QCD, Phys. Rev. D 82 (2010) 114008 [arXiv:1010.2402] [INSPIRE].ADSGoogle Scholar
  70. [70]
    ATLAS collaboration, Measurement of the W boson polarization in top quark decays with the ATLAS detector, JHEP 06 (2012) 088 [arXiv:1205.2484] [INSPIRE].ADSGoogle Scholar
  71. [71]
    G. D’Ambrosio, G. Isidori and J. Portoles, Short-distance information from B(K Lμ + μ ), Phys. Lett. B 423 (1998) 385 [hep-ph/9708326] [INSPIRE].
  72. [72]
    G. Isidori and R. Unterdorfer, On the short-distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes K L\( \mu \overline{\mu} \) , K +π + ν \( \overline{v} \) and K 0\( {{\overline{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C.M. Bouchard et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the standard model and beyond, PoS(Lattice 2011)274 [arXiv:1112.5642] [INSPIRE].
  77. [77]
    A. Lenz et al., Anatomy of new physics in B- B mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  78. [78]
    A. Crivellin and L. Mercolli, BX dγ and constraints on new physics, Phys. Rev. D 84 (2011) 114005 [arXiv:1106.5499] [INSPIRE].ADSGoogle Scholar
  79. [79]
    BaBar collaboration, P. del Amo Sanchez et al., Study of BXγ decays and determination of |V td /V ts|, Phys. Rev. D 82 (2010) 051101 [arXiv:1005.4087] [INSPIRE].ADSGoogle Scholar
  80. [80]
    W. Wang, bsγ and bdγ (B factories), arXiv:1102.1925 [INSPIRE].
  81. [81]
    LHCb collaboration, First evidence for the decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].Google Scholar
  83. [83]
    U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top AFB with parity violation constraints, Phys. Rev. D 86 (2012) 034029 [arXiv:1203.1320] [INSPIRE].ADSGoogle Scholar
  85. [85]
    V.A. Dzuba, J.C. Berengut, V.V. Flambaum and B. Roberts, Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109 (2012) 203003 [arXiv:1207.5864] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  87. [87]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSGoogle Scholar
  88. [88]
    P. Bamert, C.P. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].ADSGoogle Scholar
  89. [89]
    L. Lavoura and J.P. Silva, The oblique corrections from vector-like singlet and doublet quarks, Phys. Rev. D 47 (1993) 2046 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Svjetlana Fajfer
    • 1
    • 2
  • Admir Greljo
    • 1
  • Jernej F. Kamenik
    • 1
    • 2
    Email author
  • Ivana Mustać
    • 1
  1. 1.Jozef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations