Advertisement

Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production

  • Maxime Gouzevitch
  • Alexandra Oliveira
  • Juan RojoEmail author
  • Rogerio Rosenfeld
  • Gavin P. Salam
  • Veronica Sanz
Open Access
Article

Abstract

We study resonant pair production of heavy particles in fully hadronic final states by means of jet substructure techniques. We propose a new resonance tagging strategy that smoothly interpolates between the highly boosted and fully resolved regimes, leading to uniform signal efficiencies and background rejection rates across a broad range of masses. Our method makes it possible to efficiently replace independent experimental searches, based on different final state topologies, with a single common analysis. As a case study, we apply our technique to pair production of Higgs bosons decaying into \( b\overline{b} \) pairs in generic New Physics scenarios. We adopt as benchmark models radion and massive KK graviton production in warped extra dimensions. We find that despite the overwhelming QCD background, the 4b final state has enough sensitivity to provide a complementary handle in searches for enhanced Higgs pair production at the LHC.

Keywords

Jets Hadronic Colliders 

References

  1. [1]
    S. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CMS collaboration, Search for dijet resonances in 7 TeV pp collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [arXiv:1010.0203] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 013 [arXiv:1210.2387] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1302.4794 [INSPIRE].
  6. [6]
    ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for new physics in the dijet mass distribution using 1 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV collected by the ATLAS detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt{s}=7 \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, Search for quark contact interactions in dijet angular distributions in pp collisions at \( \sqrt{s}=7 \) TeV measured with the ATLAS detector, Phys. Lett. B 694 (2011) 327 [arXiv:1009.5069] [INSPIRE].ADSGoogle Scholar
  11. [11]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2263 [arXiv:1210.4826] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    CMS collaboration, Search for three-jet resonances in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2012) 329 [arXiv:1208.2931] [INSPIRE].ADSGoogle Scholar
  14. [14]
    CDF collaboration, T. Aaltonen et al., First search for multijet resonances in \( \sqrt{s}=1.96 \) TeV \( p\overline{p} \) collisions, Phys. Rev. Lett. 107 (2011) 042001 [arXiv:1105.2815] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].ADSGoogle Scholar
  16. [16]
    CMS collaboration, Search for multijet resonances in the 8-jet final state, CMS-PAS-EXO-11-075 (2011).
  17. [17]
    CMS collaboration, Search for microscopic black holes in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 061 [arXiv:1202.6396] [INSPIRE].ADSGoogle Scholar
  18. [18]
    CMS collaboration, Search for microscopic black holes in pp collisions at \( \sqrt{s}=8 \) TeV, arXiv:1303.5338 [INSPIRE].
  19. [19]
    ATLAS collaboration, Measurement of the b-tag efficiency in a sample of jets containing muons with 5 fb −1 of data from the ATLAS detector, ATLAS-CONF-2012-043 (2012).
  20. [20]
    ATLAS collaboration, Measurement of the mistag rate with 5 fb −1 of data collected by the ATLAS detector, ATLAS-CONF-2012-040 (2012).
  21. [21]
    ATLAS collaboration, Light-quark and gluon jets in ATLAS, ATLAS-CONF-2011-053 (2011).
  22. [22]
    ATLAS collaboration, Measurement of the flavour composition of dijet events in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2301 [arXiv:1210.0441] [INSPIRE].ADSGoogle Scholar
  23. [23]
    CMS collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV, Phys. Lett. B 723 (2013) 280 [arXiv:1212.1910] [INSPIRE].ADSGoogle Scholar
  24. [24]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].ADSGoogle Scholar
  25. [25]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CMS collaboration, Study of jet substructure in pp collisions at 7 TeV in CMS, CMS-PAS-JME-10-013 (2010).Google Scholar
  28. [28]
    ATLAS collaboration, Performance of large-R jets and jet substructure reconstruction with the ATLAS detector, ATLAS-CONF-2012-065 (2012).
  29. [29]
    ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-066 (2012).
  30. [30]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Massive color-octet bosons and pairs of resonances at hadron colliders, Phys. Lett. B 670 (2008) 119 [arXiv:0709.2378] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Kilic, T. Okui and R. Sundrum, Colored resonances at the Tevatron: phenomenology and discovery potential in multijets, JHEP 07 (2008) 038 [arXiv:0802.2568] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M.J. Dolan, C. Englert and M. Spannowsky, New physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R.S. Chivukula, M. Golden and E.H. Simmons, Multi-jet physics at hadron colliders, Nucl. Phys. B 363 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for anomalous \( t\overline{t} \) production in the highly-boosted all-hadronic final state, JHEP 09 (2012) 029 [arXiv:1204.2488] [INSPIRE].ADSGoogle Scholar
  40. [40]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2012) 041 [arXiv:1207.2409] [INSPIRE].ADSGoogle Scholar
  41. [41]
    CMS collaboration, Search for \( t\overline{t} \) resonant production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].ADSGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 116 [arXiv:1211.2202] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125 [arXiv:1211.5142] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.M. Harris and K. Kousouris, Searches for dijet resonances at hadron colliders, Int. J. Mod. Phys. A 26 (2011) 5005 [arXiv:1110.5302] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC, JHEP 12 (2008) 032 [arXiv:0810.1304] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Jet reconstruction in heavy ion collisions, Eur. Phys. J. C 71 (2011) 1539 [arXiv:1010.1759] [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Quiroga-Arias and S. Sapeta, A comparative study of jet substructure taggers, arXiv:1209.2858 [INSPIRE].
  57. [57]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. [58]
    H. Davoudiasl, J. Hewett and T. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P. Nath, Physics from extra dimensions, Part. Nucl. Lett. 104 (2001) 7 [hep-ph/0011177] [INSPIRE].Google Scholar
  60. [60]
    B. Allanach, K. Odagiri, M.A. Parker and B. Webber, Searching for narrow graviton resonances with the ATLAS detector at the Large Hadron Collider, JHEP 09 (2000) 019 [hep-ph/0006114] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    B. Allanach et al., Exploring small extra dimensions at the large hadron collider, JHEP 12 (2002) 039 [hep-ph/0211205] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D. Dominici, B. Grzadkowski, J.F. Gunion and M. Toharia, The scalar sector of the Randall-Sundrum model, Nucl. Phys. B 671 (2003) 243 [hep-ph/0206192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    H. Davoudiasl, J. Hewett and T. Rizzo, Brane localized curvature for warped gravitons, JHEP 08 (2003) 034 [hep-ph/0305086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    N. Rius and V. Sanz, Dynamical symmetry breaking in warped compactifications, Phys. Rev. D 64 (2001) 075006 [hep-ph/0103086] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G. Shiu, B. Underwood, K.M. Zurek and D.G. Walker, Probing the geometry of warped string compactifications at the LHC, Phys. Rev. Lett. 100 (2008) 031601 [arXiv:0705.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Belyaev, M. Drees, O.J. Eboli, J. Mizukoshi and S. Novaes, Supersymmetric Higgs pair production at hadron colliders, Phys. Rev. D 60 (1999) 075008 [hep-ph/9905266] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A. Barrientos Bendezu and B.A. Kniehl, Pair production of neutral Higgs bosons at the CERN large hadron collider, Phys. Rev. D 64 (2001) 035006 [hep-ph/0103018] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP 05 (2006) 074 [hep-ph/0509179] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    R. Contino et al., Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair production of a 125 GeV Higgs boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, arXiv:1301.1245 [INSPIRE].
  78. [78]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    H. Sun and Y.-J. Zhou, Enhancement of loop induced 125 GeV Higgs pair production through large-extra-dimensions model at the LHC, arXiv:1211.6201 [INSPIRE].
  80. [80]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W^{+}}{W^{-}} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  82. [82]
    L. Randall, V. Sanz and M.D. Schwartz, Entropy area relations in field theory, JHEP 06 (2002) 008 [hep-th/0204038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    M.S. Carena, T.M. Tait and C. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [INSPIRE].MathSciNetADSGoogle Scholar
  84. [84]
    Y. Cui, T. Gherghetta and J.D. Wells, Emergent electroweak symmetry breaking with composite W , Z bosons, JHEP 11 (2009) 080 [arXiv:0907.0906] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].ADSGoogle Scholar
  86. [86]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    T. Gherghetta and A. Pomarol, A warped supersymmetric standard model, Nucl. Phys. B 602 (2001) 3 [hep-ph/0012378] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSGoogle Scholar
  90. [90]
    H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].MathSciNetADSGoogle Scholar
  91. [91]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [INSPIRE].MathSciNetADSGoogle Scholar
  93. [93]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    H. Davoudiasl, J. Hewett and T. Rizzo, Experimental probes of localized gravity: on and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].ADSGoogle Scholar
  95. [95]
    A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein graviton in bulk RS models, JHEP 09 (2007) 013 [hep-ph/0701150] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  96. [96]
    H. Davoudiasl and T. G. Rizzo, Bulk physics at a graviton factory, Phys. Lett. B 512 (2001) 100 [hep-ph/0104199] [INSPIRE].ADSGoogle Scholar
  97. [97]
    J. Hirn and V. Sanz, (Not) summing over Kaluza-Kleins, Phys. Rev. D 76 (2007) 044022 [hep-ph/0702005] [INSPIRE].MathSciNetADSGoogle Scholar
  98. [98]
    H. Davoudiasl, J. Hewett and T. Rizzo, Phenomenology on a slice of AdS 5 × M δ space-time, JHEP 04 (2003) 001 [hep-ph/0211377] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  99. [99]
    K. Fukazawa, T. Inagaki, Y. Katsuki, T. Muta and K. Ohkura, Dynamical origin of low mass fermions in Randall-Sundrum background, Int. J. Mod. Phys. A 20 (2005) 4085 [hep-ph/0308022] [INSPIRE].ADSGoogle Scholar
  100. [100]
    R. Bao, M.S. Carena, J. Lykken, M. Park and J. Santiago, Revamped braneworld gravity, Phys. Rev. D 73 (2006) 064026 [hep-th/0511266] [INSPIRE].MathSciNetADSGoogle Scholar
  101. [101]
    H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall Higgs in the universal Randall-Sundrum model, JHEP 08 (2006) 042 [hep-ph/0508279] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    C.G. Callan Jr., S.R. Coleman and R. Jackiw, A new improved energy-momentum tensor, Annals Phys. 59 (1970) 42 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  103. [103]
    D. Dominici, B. Grzadkowski, J.F. Gunion and M. Toharia, The scalar sector of the Randall-Sundrum model, Nucl. Phys. B 671 (2003) 243 [hep-ph/0206192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  104. [104]
    B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].ADSGoogle Scholar
  105. [105]
    CMS collaboration, Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider, Phys. Rev. Lett. 108 (2012) 111801 [arXiv:1112.0688] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].ADSGoogle Scholar
  107. [107]
    ATLAS collaboration, Search for extra dimensions in diphoton events using proton-proton collisions recorded at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, New J. Phys. 15 (2013) 043007 [arXiv:1210.8389] [INSPIRE].CrossRefGoogle Scholar
  108. [108]
    V. Barger and M. Ishida, Randall-Sundrum reality at the LHC, Phys. Lett. B 709 (2012) 185 [arXiv:1110.6452] [INSPIRE].ADSGoogle Scholar
  109. [109]
    H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs Searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].ADSGoogle Scholar
  110. [110]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    K. Agashe, H. Davoudiasl, G. Perez and A. Soni, Warped gravitons at the LHC and beyond, Phys. Rev. D 76 (2007) 036006 [hep-ph/0701186] [INSPIRE].ADSGoogle Scholar
  112. [112]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  113. [113]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].ADSGoogle Scholar
  116. [116]
    G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Curing the ills of higgsless models: the S parameter and unitarity, Phys. Rev. D 71 (2005) 035015 [hep-ph/0409126] [INSPIRE].ADSGoogle Scholar
  117. [117]
    J. Hirn and V. Sanz, A negative S parameter from holographic technicolor, Phys. Rev. Lett. 97 (2006) 121803 [hep-ph/0606086] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    J. Hirn and V. Sanz, The fifth dimension as an analogue computer for strong interactions at the LHC, JHEP 03 (2007) 100 [hep-ph/0612239] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    J. Hirn and V. Sanz, Interpolating between low and high energy QCD via a 5 − D Yang-Mills model, JHEP 12 (2005) 030 [hep-ph/0507049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  120. [120]
    J. Hirn, N. Rius and V. Sanz, Geometric approach to condensates in holographic QCD, Phys. Rev. D 73 (2006) 085005 [hep-ph/0512240] [INSPIRE].ADSGoogle Scholar
  121. [121]
    R. Contino and A. Pomarol, The holographic composite Higgs, C. R. Phys. 8 (2007) 1058.ADSCrossRefGoogle Scholar
  122. [122]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    E. Katz, A. Lewandowski and M.D. Schwartz, Tensor mesons in AdS/QCD, Phys. Rev. D 74 (2006) 086004 [hep-ph/0510388] [INSPIRE].ADSGoogle Scholar
  126. [126]
    R. Fok, C. Guimaraes, R. Lewis and V. Sanz, It is a graviton! or maybe not, JHEP 12 (2012) 062 [arXiv:1203.2917] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    E. Halyo, Is f (975) 0 a QCD dilation?, Phys. Lett. B 271 (1991) 415 [INSPIRE].ADSGoogle Scholar
  128. [128]
    A.A. Andrianov, V.A. Andrianov, V.Y. Novozhilov and Y. Novozhilov, A scalar meson is a dilaton in QCD, JETP Lett. 43 (1986) 719 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 557] [INSPIRE].ADSGoogle Scholar
  129. [129]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  131. [131]
    C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].ADSGoogle Scholar
  132. [132]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    CMS collaboration, Measurement of \( B\overline{B} \) angular correlations based on secondary vertex reconstruction at \( \sqrt{s}=7 \) TeV, JHEP 03 (2011) 136 [arXiv:1102.3194] [INSPIRE].Google Scholar
  134. [134]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].CrossRefGoogle Scholar
  135. [135]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: W \( b\overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp\( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at next-to-leading order QCD, Phys. Rev. D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].ADSGoogle Scholar
  141. [141]
    Y. Bai and J. Shelton, Composite octet searches with jet substructure, JHEP 07 (2012) 067 [arXiv:1107.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  143. [143]
    CMS collaboration, CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].ADSGoogle Scholar
  144. [144]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  145. [145]
    T. Plehn and M. Spannowsky, Top tagging, J. Phys. G 39 (2012) 083001 [arXiv:1112.4441] [INSPIRE].ADSGoogle Scholar
  146. [146]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Maxime Gouzevitch
    • 1
  • Alexandra Oliveira
    • 2
    • 3
  • Juan Rojo
    • 4
    Email author
  • Rogerio Rosenfeld
    • 2
    • 4
  • Gavin P. Salam
    • 4
    • 5
  • Veronica Sanz
    • 6
    • 7
  1. 1.Université de Lyon, Université Claude Bernard Lyon 1CNRS-IN2P3, Institut de Physique Nucléaire de LyonVilleurbanneFrance
  2. 2.Instituto de Física TeóricaUniversidade Estadual Paulista and ICTP South American Institute for Fundamental ResearchSão PauloBrazil
  3. 3.Institut de Physique Theorique, CEA-SaclayGif-sur-Yvette CedexFrance
  4. 4.PH Department, TH UnitCERNGeneva 23Switzerland
  5. 5.LPTHE, CNRS UMR 7589UPMC Univ. Paris 6ParisFrance
  6. 6.Department of Physics and AstronomyYork UniversityTorontoCanada
  7. 7.Department of Physics and AstronomyUniversity of SussexBrightonU.K.

Personalised recommendations