Advertisement

Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation

  • Johannes M. Henn
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
Article

Abstract

We apply a recently suggested new strategy to solve differential equations for master integrals for families of Feynman integrals. After a set of master integrals has been found using the integration-by-parts method, the crucial point of this strategy is to introduce a new basis where all master integrals are pure functions of uniform transcendentality. In this paper, we apply this method to all planar three-loop four-point massless on-shell master integrals. We explicitly find such a basis, and show that the differential equations are of the Knizhnik-Zamolodchikov type. We explain how to solve the latter to all orders in the dimensional regularization parameter ϵ, including all boundary constants, in a purely algebraic way. The solution is expressed in terms of harmonic polylogarithms. We explicitly write out the Laurent expansion in ϵ for all master integrals up to weight six.

Keywords

Scattering Amplitudes Renormalization Regularization and Renormalons 

References

  1. [1]
    A. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    A. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  4. [4]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Smirnov and A. Petukhov, The number of master integrals is finite, Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Smirnov and V. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, arXiv:1302.5885 [INSPIRE].
  12. [12]
    C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    A. von Manteuffel and C. Studerus, Reduze 2Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  14. [14]
    R. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  15. [15]
    M. Argeri and P. Mastrolia, Feynman diagrams and differential equations, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts in Modern Physics volume 250, Springer U.S.A. (2012).Google Scholar
  17. [17]
    M. Czakon and A. Mitov, Inclusive heavy flavor hadroproduction in NLO QCD: the exact analytic result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. von Manteuffel and C. Studerus, Top quark pairs at two loops and Reduze 2, PoS(LL2012)059 [arXiv:1210.1436] [INSPIRE].
  19. [19]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, arXiv:1304.1806 [INSPIRE].
  20. [20]
    K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1997) 831.CrossRefGoogle Scholar
  21. [21]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetMATHGoogle Scholar
  22. [22]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].ADSGoogle Scholar
  23. [23]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell planar triple box, Phys. Lett. B 567 (2003) 193 [hep-ph/0305142] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    G. Heinrich, T. Huber, D. Kosower and V. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Kotikov, L. Lipatov, A. Onishchenko and V. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754-756] [hep-th/0404092] [INSPIRE].
  30. [30]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  31. [31]
    F. Brown and K. Yeats, Spanning forest polynomials and the transcendental weight of Feynman graphs, Commun. Math. Phys. 301 (2011) 357 [arXiv:0910.5429] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    C. Anastasiou, J. Tausk and M. Tejeda-Yeomans, The on-shell massless planar double box diagram with an irreducible numerator, Nucl. Phys. Proc. Suppl. 89 (2000) 262 [hep-ph/0005328] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V. Knizhnik and A. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form-factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Heinrich, T. Huber and D. Maˆıtre, Master integrals for fermionic contributions to massless three-loop form-factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Lee and V. Smirnov, Analytic ϵ-expansions of master integrals corresponding to massless three-loop form factors and three-loop g − 2 up to four-loop transcendentality weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J.M. Henn and T. Huber, The four-loop cusp anomalous dimension from iterated Wilson line integrals, arXiv:1304.6418 [INSPIRE].
  41. [41]
    E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    A. Smirnov and M. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  43. [43]
    A. Smirnov, V. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [arXiv:0912.0158] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  44. [44]
    F. Brown, Multiple zeta values and periods of moduli spaces M 0,n, math/0606419.
  45. [45]
    G. A.B., A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].
  46. [46]
    M.Y. Kalmykov and B.A. Kniehl, Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations and polynomial solutions, Phys. Lett. B 714 (2012) 103 [arXiv:1205.1697] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    M.Y. Kalmykov and B.A. Kniehl, ’Sixth root of unityand Feynman diagrams: hypergeometric function approach point of view, Nucl. Phys. Proc. Suppl. 205-206 (2010) 129 [arXiv:1007.2373] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68 (1999) 351.MathSciNetADSMATHCrossRefGoogle Scholar
  49. [49]
    J. Fleischer, A. Kotikov and O. Veretin, Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass, Nucl. Phys. B 547 (1999) 343 [hep-ph/9808242] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Marcolli, Feynman motives, World Scientific Publishing Company, Singapore (2009).CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Johannes M. Henn
    • 1
  • Alexander V. Smirnov
    • 2
    • 4
  • Vladimir A. Smirnov
    • 3
  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Scientific Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische Teilchenphysik, KITKarlsruheGermany

Personalised recommendations