Axion mediation

  • Masha Baryakhtar
  • Edward Hardy
  • John March-Russell


We explore the possibility that supersymmetry breaking is mediated to the Standard Model sector through the interactions of a generalized axion multiplet that gains a F-term expectation value. Using an effective field theory framework we enumerate the most general possible set of axion couplings and compute the Standard Model sector soft-supersymmetry-breaking terms. Unusual, non-minimal spectra, such as those of both natural and split supersymmetry are easily implemented. We discuss example models and low-energy spectra, as well as implications of the particularly minimal case of mediation via the QCD axion multiplet. We argue that if the Peccei-Quinn solution to the strong-CP problem is realized in string theory then such axion-mediation is generic, while in a field theory model it is a natural possibility in both DFSZ- and KSVZ-like regimes. Axion mediation can parametrically dominate gravity-mediation and is also cosmologically beneficial as the constraints arising from axino and gravitino overproduction are reduced. Finally, in the string context, axion mediation provides a motivated mechanism where the UV completion naturally ameliorates the supersymmetric flavor problem.


Supersymmetry Phenomenology 


  1. [1]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Lodone, Supersymmetry phenomenology beyond the MSSM after 5/fb of LHC data, Int. J. Mod. Phys. A 27 (2012) 1230010 [arXiv:1203.6227] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Hardy, J. March-Russell and J. Unwin, Precision unification in λ SUSY with a 125 GeV Higgs, JHEP 10 (2012) 072 [arXiv:1207.1435] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Search for RPV supersymmetry with three or more leptons and b-tags, CMS-PAS-SUS-12-027 (2012).
  13. [13]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977)1440 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Higaki and R. Kitano, On supersymmetric effective theories of axion, Phys. Rev. D 86 (2012)075027 [arXiv:1104.0170] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].Google Scholar
  22. [22]
    E. Poppitz and S.P. Trivedi, Dynamical supersymmetry breaking, Ann. Rev. Nucl. Part. Sci. 48 (1998)307 [hep-th/9803107] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Dudas, Composite supersymmetric axion-dilaton-dilatino system and the breaking of supersymmetry, Phys. Rev. D 49 (1994) 1109 [hep-ph/9307294] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Cicoli, M. Goodsell, A. Ringwald, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B.S. Acharya, K. Bobkov and P. Kumar, An M-theory solution to the strong CP problem and constraints on the axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Higaki and T. Kobayashi, Note on moduli stabilization, supersymmetry breaking and axiverse, Phys. Rev. D 84 (2011) 045021 [arXiv:1106.1293] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Flacke, B. Gripaios, J. March-Russell and D. Maybury, Warped axions, JHEP 01 (2007) 061 [hep-ph/0611278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Hebecker and J. March-Russell, The ubiquitous throat, Nucl. Phys. B 781 (2007) 99 [hep-th/0607120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M.P. Hertzberg, M. Tegmark and F. Wilczek, Axion cosmology and the energy scale of inflation, Phys. Rev. D 78 (2008) 083507 [arXiv:0807.1726] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology, Phys. Rev. D 68 (2003)075011 [hep-ph/0210256] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P.W. Graham and S. Rajendran, Axion dark matter detection with cold molecules, Phys. Rev. D 84 (2011) 055013 [arXiv:1101.2691] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Brignole, L.E. Ibáñez, C. Muñoz and C. Scheich, Some issues in soft SUSY breaking terms from dilaton/moduli sectors, Z. Phys. C 74 (1997) 157 [hep-ph/9508258] [INSPIRE].Google Scholar
  37. [37]
    A. Brignole, L. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric standard model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995)747] [hep-ph/9308271] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B. de Carlos, J. Casas and C. Muñoz, Supersymmetry breaking and determination of the unification gauge coupling constant in string theories, Nucl. Phys. B 399 (1993) 623 [hep-th/9204012] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino condensation in superstring models, Phys. Lett. B 156 (1985) 55 [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    T. Banks and M. Dine, Coping with strongly coupled string theory, Phys. Rev. D 50 (1994) 7454 [hep-th/9406132] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory solution to the hierarchy problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    B.S. Acharya et al., Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. [51]
    J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    K.J. Bae, K. Choi and S.H. Im, Effective interactions of axion supermultiplet and thermal production of axino dark matter, JHEP 08 (2011) 065 [arXiv:1106.2452] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].ADSGoogle Scholar
  54. [54]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  55. [55]
    N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [INSPIRE].ADSGoogle Scholar
  56. [56]
    F. D’Eramo, J. Thaler and Z. Thomas, The two faces of anomaly mediation, JHEP 06 (2012)151 [arXiv:1202.1280] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T. Cohen, A. Hook and B. Wecht, Comments on gaugino screening, Phys. Rev. D 85 (2012)115004 [arXiv:1112.1699] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Dine and N. Seiberg, Comments on quantum effects in supergravity theories, JHEP 03 (2007)040 [hep-th/0701023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP 04 (2000) 009 [hep-th/9911029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E. Poppitz and S.P. Trivedi, Some remarks on gauge mediated supersymmetry breaking, Phys. Lett. B 401 (1997) 38 [hep-ph/9703246] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Gupta, D.E. Kaplan and T. Zorawski, Gaugomaly mediation revisited, arXiv:1212.6969 [INSPIRE].
  63. [63]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65–89] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    G. Kane, P. Kumar, R. Lu and B. Zheng, Higgs mass prediction for realistic string/M theory vacua, Phys. Rev. D 85 (2012) 075026 [arXiv:1112.1059] [INSPIRE].ADSGoogle Scholar
  68. [68]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  69. [69]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983)127 [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSGoogle Scholar
  71. [71]
    L. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983)133 [INSPIRE].ADSGoogle Scholar
  72. [72]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P. Gambino, G. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].ADSGoogle Scholar
  76. [76]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].ADSGoogle Scholar
  80. [80]
    K.J. Bae, E.J. Chun and S.H. Im, Cosmology of the DFSZ axino, JCAP 03 (2012) 013 [arXiv:1111.5962] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    G. Dvali, G. Giudice and A. Pomarol, The μ problem in theories with gauge mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A. De Simone, R. Franceschini, G.F. Giudice, D. Pappadopulo and R. Rattazzi, Lopsided Gauge mediation, JHEP 05 (2011) 112 [arXiv:1103.6033] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    CMS collaboration, Inclusive search for squarks and gluinos in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, arXiv:1208.0949 [INSPIRE].
  86. [86]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    E. Hardy, Is natural SUSY natural?, arXiv:1306.1534 [INSPIRE].
  92. [92]
    A. Arvanitaki, M. Baryakhtar, T. Gherghetta, X. Huang, K. Van Tilburg and G. Villadoro, The last vestiges of naturalness, to appear.Google Scholar
  93. [93]
    E. Hardy and J. March-Russell, Retrofitted natural supersymmetry from a U(1), JHEP 05 (2013)120 [arXiv:1302.5423] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  95. [95]
    ATLAS collaboration, Search for gluino pair production in final states with missing transverse momentum and at least three b-jets using 12.8 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector.,ATLAS-CONF-2012-145(2012).
  96. [96]
    ATLAS collaboration, Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2174 [arXiv:1207.4686] [INSPIRE].ADSGoogle Scholar
  97. [97]
    CMS collaboration, A search for anomalous production of events with three or more leptons using 9.2 fb, CMS-PAS-SUS-12-026 (2012).
  98. [98]
    J. Barnard, B. Farmer, T. Gherghetta and M. White, Natural gauge mediation with a bino NLSP at the LHC, Phys. Rev. Lett. 109 (2012) 241801 [arXiv:1208.6062] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Hebecker and J. March-Russell, A Minimal \( {{{{S^1}}} \left/ {{\left( {{Z_2}\times Z_2^{\prime }} \right)}} \right.} \) orbifold GUT, Nucl. Phys. B 613 (2001)3 [hep-ph/0106166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].ADSGoogle Scholar
  101. [101]
    C. Lüdeling, F. Ruehle and C. Wieck, Non-universal anomalies in heterotic string constructions, Phys. Rev. D 85 (2012) 106010 [arXiv:1203.5789] [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Gabutti, M. Olechowski, S. Cooper, S. Pokorski and L. Stodolsky, Light neutralinos as dark matter in the unconstrained minimal supersymmetric standard model, Astropart. Phys. 6 (1996)1 [hep-ph/9602432] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    V. Bednyakov, H. Klapdor-Kleingrothaus and S. Kovalenko, Superlight neutralino as a dark matter particle candidate, Phys. Rev. D 55 (1997) 503 [hep-ph/9608241] [INSPIRE].ADSGoogle Scholar
  104. [104]
    G. Bélanger, F. Boudjema, A. Cottrant, A. Pukhov and S. Rosier-Lees, Lower limit on the neutralino mass in the general MSSM, JHEP 03 (2004) 012 [hep-ph/0310037] [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    H. Abe, T. Kobayashi and Y. Omura, Relaxed fine-tuning in models with non-universal gaugino masses, Phys. Rev. D 76 (2007) 015002 [hep-ph/0703044] [INSPIRE].ADSGoogle Scholar
  107. [107]
    D. Horton and G. Ross, Naturalness and focus points with non-universal gaugino masses, Nucl. Phys. B 830 (2010) 221 [arXiv:0908.0857] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  109. [109]
    J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    CAST collaboration, T. Dafni et al., CAST: status and latest results, DESY-PROC-2011-04 (2011).Google Scholar
  111. [111]
    G. Raffelt and L. Stodolsky, Mixing of the photon with low mass particles, Phys. Rev. D 37 (1988)1237 [INSPIRE].ADSGoogle Scholar
  112. [112]
    L.D. Duffy et al., A high resolution search for dark-matter axions, Phys. Rev. D 74 (2006) 012006 [astro-ph/0603108] [INSPIRE].ADSGoogle Scholar
  113. [113]
    R. Bradley et al., Microwave cavity searches for dark-matter axions, Rev. Mod. Phys. 75 (2003)777 [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    S.J. Asztalos et al., An Improved RF cavity search for halo axions, Phys. Rev. D 69 (2004) 011101 [astro-ph/0310042] [INSPIRE].ADSGoogle Scholar
  115. [115]
    E. Chun and A. Lukas, Axino mass in supergravity models, Phys. Lett. B 357 (1995) 43 [hep-ph/9503233] [INSPIRE].ADSGoogle Scholar
  116. [116]
    C. Cheung, G. Elor and L.J. Hall, The cosmological axino problem, Phys. Rev. D 85 (2012) 015008 [arXiv:1104.0692] [INSPIRE].ADSGoogle Scholar
  117. [117]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSGoogle Scholar
  118. [118]
    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  119. [119]
    L.M. Carpenter, M. Dine, G. Festuccia and L. Ubaldi, Axions in gauge mediation, Phys. Rev. D 80 (2009) 125023 [arXiv:0906.5015] [INSPIRE].ADSGoogle Scholar
  120. [120]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  121. [121]
    N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Masha Baryakhtar
    • 1
  • Edward Hardy
    • 2
  • John March-Russell
    • 1
    • 2
  1. 1.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations