Advertisement

Naturalness of neutralino dark matter

  • Philipp Grothaus
  • Manfred Lindner
  • Yasutaka Takanishi
Article

Abstract

We investigate the level of fine-tuning of neutralino dark matter below 200 GeV in the low-energy phenomenological minimal supersymmetric Standard Model taking into account the newest results from XENON100 and the Large Hadron Collider as well as all other experimental bounds from collider physics and the cosmological abundance. We find that current and future direct dark matter searches significantly rule out a large area of the untuned parameter space, but solutions survive which do not increase the level of fine-tuning. As expected, the level of tuning tends to increase for lower cross-sections, but regions of resonant neutralino annihilation still allow for a band at light masses, where the fine-tuning stays small even below the current experimental limits for direct detection cross-sections. For positive values of the supersymmetric Higgs mass parameter μ large portions of the allowed parameter space are excluded, but there still exist untuned solutions at higher neutralino masses which will essentially be ruled out if XENON1t does not observe a signal. For negative μ untuned solutions are not much constrained by current limits of direct searches and, if the neutralino mass was found outside the resonance regions, a negative μ-term would be favored from a fine-tuning perspective. Light stau annihilation plays an important role to fulfill the relic density condition in certain neutralino mass regions. Finally we discuss, in addition to the amount of tuning for certain regions in the neutralino mass-direct detection cross-section plane, the parameter mapping distribution if the allowed model parameter space is chosen to be scanned homogeneously (randomized).

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    E. Aprile, Latest XENON100 Results, talk given at Dark Attack 2012, Ascona, Switzerland, 18 July 2012.Google Scholar
  2. [2]
    F. Gianotti, Status of Standard Model Higgs searches in ATLAS, at Latest update in the search for the Higgs boson, CERN, Geneva, Schwitzerland, 4 July 2012.Google Scholar
  3. [3]
    J. Incandela, Status of Standard Model Higgs searches in CMS, at Latest update in the search for the Higgs boson, CERN, Geneva, Schwitzerland, 4 July 2012.Google Scholar
  4. [4]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSGoogle Scholar
  6. [6]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Drees and M.M. Nojiri, One loop corrections to the Higgs sector in minimal supergravity models, Phys. Rev. D 45 (1992) 2482 [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Buchmueller et al., Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  13. [13]
    J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Bergström, Non-baryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  19. [19]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Buchmueller et al., Supersymmetry in Light of 1/fb of LHC Data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the Phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Sekmen et al., Interpreting LHC SUSY searches in the phenomenological MSSM, JHEP 02 (2012) 075 [arXiv:1109.5119] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Arbey, M. Battaglia and F. Mahmoudi, Implications of LHC Searches on SUSY Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter, Eur. Phys. J. C 72 (2012) 1847 [arXiv:1110.3726] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Albornoz Vásquez, G. Bélanger, J. Billard and F. Mayet, Probing neutralino dark matter in the MSSM & the NMSSM with directional detection, Phys. Rev. D 85 (2012) 055023 [arXiv:1201.6150] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs Sector and Fine-Tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  29. [29]
    DAMA, LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CoGeNT collaboration, C. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Hooper and T. Plehn, Supersymmetric dark matter: How light can the LSP be?, Phys. Lett. B 562 (2003) 18 [hep-ph/0212226] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Bottino, N. Fornengo and S. Scopel, Light relic neutralinos, Phys. Rev. D 67 (2003) 063519 [hep-ph/0212379] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H.K. Dreiner et al., Mass Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Kuflik, A. Pierce and K.M. Zurek, Light Neutralinos with Large Scattering Cross sections in the Minimal Supersymmetric Standard Model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003.0682] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Feldman, Z. Liu and P. Nath, Low Mass Neutralino Dark Matter in the MSSM with Constraints from B sμ + μ and Higgs Search Limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.A. Vásquez, G. Bélanger, C. Bœhm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].ADSGoogle Scholar
  37. [37]
    N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L. Calibbi, T. Ota and Y. Takanishi, Light Neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments, JHEP 07 (2011) 013 [arXiv:1104.1134] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Arbey, M. Battaglia and F. Mahmoudi, Light Neutralino Dark Matter in the pMSSM: Implications of LEP, LHC and Dark Matter Searches on SUSY Particle Spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Angloher et al., Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    L. Calibbi, T. Ota and Y. Takanishi, Light Neutralino in the MSSM: An Update with the Latest LHC Results, J. Phys. Conf. Ser. 375 (2012) 012041 [arXiv:1112.0219] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Kopp, T. Schwetz and J. Zupan, Light Dark Matter in the light of CRESST-II, JCAP 03 (2012) 001 [arXiv:1110.2721] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    CDMS-II collaboration, Z. Ahmed et al., Results from a Low-Energy Analysis of the CDMS II Germanium Data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Perelstein and C. Spethmann, A collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001) 114 [hep-ph/0105004] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Cassel, D. Ghilencea and G. Ross, Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D.M. Ghilencea, H.M. Lee and M. Park, Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level, JHEP 07 (2012) 046 [arXiv:1203.0569] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Perelstein and B. Shakya, Fine-Tuning Implications of Direct Dark Matter Searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Albornoz Vásquez, G. Bélanger and C. Bœhm, Revisiting light neutralino scenarios in the MSSM, Phys. Rev. D 84 (2011) 095015 [arXiv:1108.1338] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Matsumoto and T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator, ACM T. Model. Comput. S. 8 (1998) 3.zbMATHCrossRefGoogle Scholar
  56. [56]
    T. Nishimura, Tables of 64-bit Mersenne Twisters, ACM T. Model. Comput. S. 10 (2000) 348.CrossRefGoogle Scholar
  57. [57]
    B. Dumont, G. Bélanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON and LHC results, JCAP 09 (2012) 013 [arXiv:1206.1521] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
  59. [59]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
  60. [60]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].
  61. [61]
    CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].
  62. [62]
    ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-019 (2012).
  63. [63]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, CMS-PAS-HIG-12-008 (2012).
  64. [64]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of bhadron and chadron Properties at the End of 2007, arXiv:0808.1297 [INSPIRE].
  65. [65]
    LHCb collaboration, Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].
  66. [66]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of bhadron, chadron and τlepton Properties, arXiv:1010.1589 [INSPIRE].
  67. [67]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [INSPIRE].
  68. [68]
    Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  69. [69]
    ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].Google Scholar
  70. [70]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].
  71. [71]
    CMS collaboration, Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).
  73. [73]
    ATLAS collaboration, A. Parker, SUSY Searches (ATLAS/CMS): the Lady Vanishes, in 36th International Conference on High Energy Physics, ATL-PHYS-PROC-2012-267, Melbourne, Australia, 4–11 July 2012.
  74. [74]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons decaying to τ + τ pairs in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 174 [arXiv:1107.5003] [INSPIRE].ADSGoogle Scholar
  75. [75]
    CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].ADSGoogle Scholar
  76. [76]
    OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt{s}=192 \) GeV to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021.ADSGoogle Scholar
  78. [78]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  79. [79]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, micrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  80. [80]
    G. Bélanger et al., Indirect search for dark matter with micrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    C. Weniger, A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino WIMP pair annihilation, JHEP 03 (2002) 031 [hep-ph/0202009] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    H.K. Dreiner, J.S. Kim and O. Lebedev, First LHC Constraints on Neutralinos, Phys. Lett. B 715 (2012) 199 [arXiv:1206.3096] [INSPIRE].ADSGoogle Scholar
  86. [86]
    T. Falk, A. Ferstl and K.A. Olive, New contributions to neutralino elastic cross-sections from CP-violating phases in the MSSM, Phys. Rev. D 59 (1999) 055009 [Erratum ibid. D 60 (1999) 119904] [hep-ph/9806413] [INSPIRE].Google Scholar
  87. [87]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Neutralino properties in the light of a further indication of an annual modulation effect in WIMP direct search, Phys. Rev. D 59 (1999) 095003 [hep-ph/9808456] [INSPIRE].ADSGoogle Scholar
  88. [88]
    S. Choi, J. Kalinowski, G.A. Moortgat-Pick and P. Zerwas, Analysis of the neutralino system in supersymmetric theories, Eur. Phys. J. C 22 (2001) 563 [Addendum ibid. C 23 (2002) 769-772] [hep-ph/0108117] [INSPIRE].
  89. [89]
    R. Kitano and Y. Nomura, Supersymmetry with Small μ: Connections between Naturalness, Dark Matter and (Possibly) Flavor, hep-ph/0606134 [INSPIRE].
  90. [90]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g-2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Y.G. Kim, T. Nihei, L. Roszkowski and R. Ruiz de Austri, Upper and lower limits on neutralino WIMP mass and spin independent scattering cross-section and impact of new (g − 2)μ measurement, JHEP 12 (2002) 034 [hep-ph/0208069] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    LHCb collaboration, First Evidence for the Decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  93. [93]
    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb −1 of proton-proton collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-007(2013).
  94. [94]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and Blind Spots for Neutralino Dark Matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Perelstein and B. Shakya, XENON100 Implications for Naturalness in the MSSM, NMSSM and λ-SUSY, arXiv:1208.0833 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Philipp Grothaus
    • 1
    • 2
  • Manfred Lindner
    • 1
  • Yasutaka Takanishi
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonU.K.

Personalised recommendations