Mutual information between thermo-field doubles and disconnected holographic boundaries

Article

Abstract

We use mutual information as a measure of the entanglement between ‘physical’ and thermo-field double degrees of freedom in field theories at finite temperature. We compute this “thermo-mutual information” in simple toy models: a quantum mechanics two-site spin chain, a two dimensional massless fermion, and a two dimensional holographic system. In holographic systems, the thermo-mutual information is related to minimal surfaces connecting the two disconnected boundaries of an eternal black hole. We derive a number of salient features of this thermo-mutual information, including that it is UV finite, positive definite and bounded from above by the standard mutual information for the thermal ensemble. We relate the construction of the reduced density matrices used to define the thermo-mutual information to the Schwinger-Keldysh formalism, ensuring that all our objects are well defined in Euclidean and Lorentzian signature.

Keywords

Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence Black Holes 

References

  1. [1]
    B. Groisman, S. Popescu and A. Winter, Quantum, classical and total amount of correlations in a quantum state, Phys. Rev. A 72 (2005) 032317 [quant-ph/0410091].MathSciNetADSGoogle Scholar
  2. [2]
    M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Michalogiorgakis, Entanglement entropy of two dimensional systems and holography, JHEP 12 (2008) 068 [arXiv:0806.2661] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Casini, Geometric entropy, area and strong subadditivity, Class. Quant. Grav. 21 (2004) 2351 [hep-th/0312238] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    G. Refael and J.E. Moore, Criticality and entanglement in random quantum systems, J. Phys. A 42 (2009) 4010 [arXiv:0908.1986].MathSciNetGoogle Scholar
  22. [22]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].
  24. [24]
    N. Landsman and C. van Weert, Real and imaginary time field theory at finite temperature and density, Phys. Rept. 145 (1987) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755 [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    J.J. Sakurai, Modern quantum mechanics (revised edition), first edition, Addison Wesley, U.S.A. (1993).Google Scholar
  27. [27]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a field theoretical approach, J. Stat. Mech. 02 (2013) P02008 [arXiv:1210.5359] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.K. Das, Finite temperature field theory, World Scientific Publishing Company, Singapore (1997).CrossRefGoogle Scholar
  30. [30]
    M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech. 02 (2013) P02022 [arXiv:1209.2428] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    H. Casini, C. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 07 (2005) P07007 [cond-mat/0505563] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  34. [34]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  35. [35]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    S. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE].
  41. [41]
    K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].MathSciNetMATHGoogle Scholar
  42. [42]
    K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav. 20 (2003) 2235 [gr-qc/0302073] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  44. [44]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].
  45. [45]
    R. Haag, N. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Commun. Math. Phys. 5 (1967) 215 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.DAMTP, Centre of Mathematical SciencesUniversity of CambridgeCambridgeU.K.
  2. 2.Department of Physics and Center for Cosmology and Particle PhysicsNew York UniversityNew YorkU.S.A.

Personalised recommendations