Advertisement

Supersymmetric M5 brane theories on R × CP2

  • Hee-Cheol Kim
  • Kimyeong LeeEmail author
Article

Abstract

We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant \( \frac{1}{{g_{{Y\;M}}^2}}=\frac{k}{{4{\pi^2}}} \) with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1, 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU(N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Z k modding of the AdS7 × S4 geometry, we speculate that the M region is for kN 1/3 and the type IIA region is N 1/3kN. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.

Keywords

Brane Dynamics in Gauge Theories Conformal Field Models in String Theory M-Theory 

References

  1. [1]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E. Witten, Some Comments on String Dynamics, in proceedings of STRINGS95 - Future Perspectives in String Theory, Los Angeles, CA, U.S.A., 13–18 March 1995, hep-th/9507121 [INSPIRE].
  3. [3]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  6. [6]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2,0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  8. [8]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Rozali, Matrix theory and U duality in seven-dimensions, Phys. Lett. B 400 (1997) 260 [hep-th/9702136] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    H. Linander and F. Ohlsson, (2,0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. Kallen, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, arXiv:1207.4359 [INSPIRE].
  20. [20]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V.G. Kac, Representations of classical Lie superalgebras, in Differential Geometrical Methods in Mathematical Physics II - Proceedings, University of Bonn, 13–16 July 1977 [Lect. Notes Math. 676 (1978) 597].Google Scholar
  22. [22]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn - deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  24. [24]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Bhattacharyya and S. Minwalla, Supersymmetric states in M 5/M 2 CFTs, JHEP 12 (2007) 004 [hep-th/0702069] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Arvidsson, E. Flink and M. Henningson, Free tensor multiplets and strings in spontaneously broken six-dimensional (2,0) theory, JHEP 06 (2003) 039 [hep-th/0306145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Bolognesi and K. Lee, 1/4 BPS String Junctions and N 3 Problem in 6-dim (2,0) Superconformal Theories, Phys. Rev. D 84 (2011) 126018 [arXiv:1105.5073] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Pope, Eigenfunctions and spin c structures in CP 2, Phys. Lett. B 97 (1980) 417 [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Korea Institute for Advanced StudySeoulKorea

Personalised recommendations