Advertisement

Lepton mixing parameters from discrete and CP symmetries

  • Ferruccio Feruglio
  • Claudia HagedornEmail author
  • Robert Ziegler
Article

Abstract

We consider a scenario with three Majorana neutrinos in which a discrete, finite flavour group G f is combined with a generalized CP transformation. We derive conditions for consistently defining such a setup. We show that in general lepton mixing angles and CP phases (Dirac as well as Majorana) only depend on one single parameter θ which can take values between 0 and π, if the residual symmetries are G eG f in the charged lepton and G ν = Z 2 × CP in the neutrino sector. We perform a comprehensive study for G f = S 4 and find five cases which are phenomenologically interesting. They naturally lead to a non-zero reactor mixing angle and all mixing parameters are strongly correlated. Some of the patterns predict maximal atmospheric mixing and maximal Dirac phase, while others predict trivial Dirac and Majorana phases.

Keywords

Neutrino Physics CP violation Discrete and Finite Symmetries 

References

  1. [1]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSGoogle Scholar
  4. [4]
    Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. de Medeiros Varzielas, S. King and G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].ADSGoogle Scholar
  7. [7]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    DAYA BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Daya Bay collaboration, F. An et al., Improved Measurement of Electron Antineutrino Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].Google Scholar
  19. [19]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 Symmetry Prediction for the Leptonic Dirac CP Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a Large θ13 and Nearly Maximal δD , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Harrison and W. Scott, Symmetries and generalizations of tri - bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Harrison and W. Scott, μ − τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Harrison and W. Scott, The Simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE].ADSGoogle Scholar
  28. [28]
    W. Grimus and L. Lavoura, A Nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Farzan and A.Y. Smirnov, Leptonic CP-violation: Zero, maximal or between the two extremes, JHEP 01 (2007) 059 [hep-ph/0610337] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Krishnan, P. Harrison and W. Scott, Simplest Neutrino Mixing from S 4 Symmetry, JHEP 04 (2013) 087 [arXiv:1211.2000] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Mohapatra and C. Nishi, S 4 Flavored CP Symmetry for Neutrinos, Phys. Rev. D 86 (2012) 073007 [arXiv:1208.2875] [INSPIRE].ADSGoogle Scholar
  32. [32]
    G. Branco, J. Gerard and W. Grimus, Geometrical T violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].ADSGoogle Scholar
  33. [33]
    I. de Medeiros Varzielas and D. Emmanuel-Costa, Geometrical CP-violation, Phys. Rev. D 84 (2011) 117901 [arXiv:1106.5477] [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP-violation from Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193 [arXiv:1204.3633] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. de Medeiros Varzielas, Geometrical CP-violation in multi-Higgs models, JHEP 08 (2012) 055 [arXiv:1205.3780] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K.S. Babu and J. Kubo, Dihedral families of quarks, leptons and Higgses, Phys. Rev. D 71 (2005) 056006 [hep-ph/0411226] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Babu, K. Kawashima and J. Kubo, Variations on the Supersymmetric Q 6 Model of Flavor, Phys. Rev. D 83 (2011) 095008 [arXiv:1103.1664] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M.-C. Chen and K. Mahanthappa, Group Theoretical Origin of CP-violation, Phys. Lett. B 681 (2009) 444 [arXiv:0904.1721] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Meroni, S. Petcov and M. Spinrath, A SUSY SU (5) × T Unified Model of Flavour with large θ13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Ecker, W. Grimus and H. Neufeld, A standard form for generalized CP transformations, J. Phys. A 20 (1987) L807 [INSPIRE].ADSGoogle Scholar
  42. [42]
    H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Grimus and M. Rebelo, Automorphisms in gauge theories and the definition of CP and P, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    C. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S 4 × SU (5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Lam, Group Theory and Dynamics of Neutrino Mixing, Phys. Rev. D 83 (2011) 113002 [arXiv:1104.0055] [INSPIRE].ADSGoogle Scholar
  49. [49]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Altarelli and F. Feruglio, Models of neutrino masses from oscillations with maximal mixing, JHEP 11 (1998) 021 [hep-ph/9809596] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    N. Cabibbo, Time Reversal Violation in Neutrino Oscillation, Phys. Lett. B 72 (1978) 333 [INSPIRE].ADSGoogle Scholar
  53. [53]
    L. Wolfenstein, Oscillations Among Three Neutrino Types and CP-violation, Phys. Rev. D 18 (1978) 958 [INSPIRE].ADSGoogle Scholar
  54. [54]
    P. Ferreira, W. Grimus, L. Lavoura and P. Ludl, Maximal CP-violation in Lepton Mixing from a Model with Δ(27) flavour Symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].ADSGoogle Scholar
  56. [56]
    W. Grimus and L. Lavoura, A Model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C.H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Y. Lin, Tri-bimaximal Neutrino Mixing from A 4 and θ13 ∼ θC , Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    W. Grimus, L. Lavoura and A. Singraber, Trimaximal lepton mixing with a trivial Dirac phase, Phys. Lett. B 686 (2010) 141 [arXiv:0911.5120] [INSPIRE].ADSGoogle Scholar
  60. [60]
    C. Lam, Mass Independent Textures and Symmetry, Phys. Rev. D 74 (2006) 113004 [hep-ph/0611017] [INSPIRE].ADSGoogle Scholar
  61. [61]
    X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D. Hernandez, Discrete Symmetries and Lepton Mixing, talk given at BeNe 2012, 18 September 2012, ICTP, Trieste, Italy, webpage: http://users.ictp.it/~smr2366/.
  63. [63]
    G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and Applications of Finite Groups, John Wiley & Sons, New York (1916), and Dover Edition (1961).Google Scholar
  64. [64]
    W.M. Fairbairn, T. Fulton and W.H. Klink, Finite and Disconnected Subgroups of SU(3) and Their Application to the Elementary Particle Spectrum, J. Math. Phys. 5 (1964) 1038.MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. [65]
    J. Escobar and C. Luhn, The Flavor Group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    GAP, GAP - Groups, Algorithms, and Programming, Version 4.5.5, (2012), http://www.gap-system.org.
  67. [67]
    H.U. Besche, B. Eick and E. O’Brien, SmallGroups- library of allsmallgroups, GAP package, Version included in GAP 4.5.5, (2002), http://www.gap-system.org/Packages/sgl.html.
  68. [68]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  69. [69]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    E.E. Jenkins and A.V. Manohar, Rephasing Invariants of Quark and Lepton Mixing Matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. Branco, L. Lavoura and M. Rebelo, Majorana neutrinos and CP-violation in the leptonic sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSGoogle Scholar
  72. [72]
    E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.F. Nieves and P.B. Pal, Minimal rephasing invariant CP-violating parameters with Dirac and Majorana fermions, Phys. Rev. D 36 (1987) 315 [INSPIRE].ADSGoogle Scholar
  74. [74]
    F. del Aguila and M. Zralek, CP violation in the lepton sector with Majorana neutrinos, Nucl. Phys. B 447 (1995) 211 [hep-ph/9504228] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    F. del Aguila, J. Aguilar-Saavedra and M. Zralek, Invariant analysis of CP-violation, Comput. Phys. Commun. 100 (1997) 231 [hep-ph/9607311] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Aguilar-Saavedra and G. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].ADSGoogle Scholar
  77. [77]
    J.F. Nieves and P.B. Pal, Rephasing invariant CP-violating parameters with Majorana neutrinos, Phys. Rev. D 64 (2001) 076005 [hep-ph/0105305] [INSPIRE].ADSGoogle Scholar
  78. [78]
    S.M. Bilenky and S. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    L. Wolfenstein, CP Properties of Majorana Neutrinos and Double beta Decay, Phys. Lett. B 107 (1981) 77 [INSPIRE].ADSGoogle Scholar
  80. [80]
    S.M. Bilenky, N. Nedelcheva and S. Petcov, Some implications of the CP invariance for mixing of Majorana neutrinos, Nucl. Phys. B 247 (1984) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    B. Kayser, CPT, CP and C Phases and their Effects in Majorana Particle Processes, Phys. Rev. D 30 (1984) 1023 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ferruccio Feruglio
    • 1
    • 2
  • Claudia Hagedorn
    • 1
    • 2
    • 3
    Email author
  • Robert Ziegler
    • 4
    • 5
  1. 1.Dipartimento di Fisica e Astronomia “G. Galilei”Università di PadovaPaduaItaly
  2. 2.INFN, Sezione di PadovaPaduaItaly
  3. 3.SISSATriesteItaly
  4. 4.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  5. 5.TUM Institute for Advanced StudyTechnische Universität MünchenGarchingGermany

Personalised recommendations