Measuring the invisible Higgs width at the 7 and 8 TeV LHC

  • Yang Bai
  • Patrick Draper
  • Jessie Shelton
Open Access


The LHC is well on track toward the discovery or exclusion of a light Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width and can easily have large branching fractions to physics beyond the SM, making Higgs decays an excellent opportunity to observe new physics. Decays into collider-invisible particles are particularly interesting as they are theoretically well motivated and relatively clean experimentally. In this work we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs branching fraction. We analyze three channels that can be used to directly study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii) forward tagging jets. We find that the last channel, where the Higgs is produced via weak boson fusion, is the most sensitive, allowing branching fractions as small as 40 % to be probed at 20 inverse fb for masses in the range between 120 and 170 GeV, including in particular the interesting region around 125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an invisibly-decaying Higgs produced via weak boson fusion and find that the reach is comparable to but not better than the reach at the 7 TeV LHC. We further estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has substantial branching fractions to both visible and invisible final states.


Higgs Physics Beyond Standard Model 


  1. [1]
    CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032 (2011).Google Scholar
  2. [2]
    ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).Google Scholar
  3. [3]
    R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  5. [5]
    U. Ellwanger, J.F. Gunion and C. Hugonie, Establishing a no lose theorem for NMSSM Higgs boson discovery at the LHC, hep-ph/0111179 [INSPIRE].
  6. [6]
    U. Ellwanger, J. Gunion, C. Hugonie and S. Moretti, NMSSM Higgs discovery at the LHC, hep-ph/0401228 [INSPIRE].
  7. [7]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].ADSGoogle Scholar
  8. [8]
    W.-Y. Keung and P. Schwaller, Long lived fourth generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  12. [12]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  13. [13]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].ADSGoogle Scholar
  15. [15]
    X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. Weihs and J. Zurita, Dark Higgs models at the 7 TeV LHC, JHEP 02 (2012) 041 [arXiv:1110.5909] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs boson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Shao and P. Tanedo, Goldstone fermion dark matter, JHEP 09 (2011) 035 [arXiv:1106.2162] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Bertolini, K. Rehermann and J. Thaler, Visible supersymmetry breaking and an invisible Higgs, JHEP 04 (2012) 130 [arXiv:1111.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Cheung and Y. Nomura, Higgs descendants, arXiv:1112.3043 [INSPIRE].
  22. [22]
    B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Buried Higgs, Phys. Rev. D 80 (2009) 075008 [arXiv:0906.3026] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs boson: Jet substructure techniques for searching for Higgsdecay into gluons, Phys. Rev. D 84 (2011)074022 [arXiv:1006.1650] [INSPIRE].ADSGoogle Scholar
  24. [24]
    I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  25. [25]
    LEP Higgs Working for Higgs boson searches, ALEPH, DELPHI, CERN-L3, OPAL collaboration, Searches for invisible Higgs bosons: preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107032 [INSPIRE].
  26. [26]
    S. Frederiksen, N. Johnson, G.L. Kane and J. Reid, Detecting invisible Higgs bosons at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4244 [INSPIRE].ADSGoogle Scholar
  27. [27]
    O.J. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D. Roy, Search forinvisibleHiggs signals at LHC via associated production with gauge bosons, Phys. Lett. B 571 (2003) 184 [hep-ph/0304137] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev. D 71 (2005) 115007 [hep-ph/0412269] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.-h. Zhu, Detecting an invisibly Higgs boson at Fermilab Tevatron and CERN LHC, Eur. Phys. J. C 47 (2006) 833 [hep-ph/0512055] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Dedes, T. Figy, S. Hoche, F. Krauss and T.E. Underwood, Searching for Nambu-Goldstone bosons at the LHC, JHEP 11 (2008) 036 [arXiv:0807.4666] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Gopalakrishna, S.J. Lee and J.D. Wells, Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector, Phys. Lett. B 680 (2009) 88 [arXiv:0904.2007] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ATLAS collaboration, Sensitivity to an invisibly decaying Higgs boson, PHYS-PUB-2009-061 (2009).Google Scholar
  34. [34]
    CMS Collaboration, Sensitivity to an invisibly decaying Higgs boson, CMS-AN-2008-083.Google Scholar
  35. [35]
    D. Cavalli et al., The Higgs working group: summary report, hep-ph/0203056 [INSPIRE].
  36. [36]
    CMS collaboration, Search for new physics with a monojet and missing transverse energy in pp collisions at \( \sqrt {s} = 7\;TeV \), PAS-EXO-11-059 (2011).Google Scholar
  37. [37]
    ATLAS collaboration, G. Aad et al., Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 705 (2011) 294 [arXiv:1106.5327] [INSPIRE].ADSGoogle Scholar
  38. [38]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 1 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS Detector, ATLAS-CONF-2011-096 (2011).Google Scholar
  39. [39]
    ATLAS collaboration, Search for a standard model Higgs in the H → ZZ → llvv decay channel with 2.05 fb −1 of ATLAS data, ATLAS-CONF-2011-148 (2011).Google Scholar
  40. [40]
    CMS collaboration, Search for the Higgs boson in the H → ZZ → 2ℓ2ν channel in pp collisions at \( \sqrt {s} = 7\;TeV \), CMS-PAS-HIG-11-026 (2011).Google Scholar
  41. [41]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.S. Conway, Pretty good simulation of high-energy collisions, 090401 release.Google Scholar
  46. [46]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011)172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ATLAS collaboration, G. Aad et al., Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) using the ATLAS detector, Phys. Lett. B 705 (2011) 28 [arXiv:1108.1316] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P Gagnon, Invisible Higgs boson decays in the ZH and WH channels, PHYS-PUB-2005-011 (2005).Google Scholar
  52. [52]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Nikitenko and M.L. Vazquez Acosta, Monte Carlo study of gg → H + jets contribution to vector boson fusion Higgs production at the LHC, arXiv:0705.3585 [INSPIRE].
  54. [54]
    B.E. Cox, J.R. Forshaw and A.D. Pilkington, Extracting Higgs boson couplings using a jet veto, Phys. Lett. B 696 (2011) 87 [arXiv:1006.0986] [INSPIRE].ADSGoogle Scholar
  55. [55]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  56. [56]
    T. Figy, S. Palmer and G. Weiglein, Higgs production via weak boson fusion in the standard model and the MSSM, JHEP 02 (2012) 105 [arXiv:1012.4789] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosonsManual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
  58. [58]
    C. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].ADSGoogle Scholar
  60. [60]
    CMS collaboration, Data-driven estimation of the invisible Z background to the SUSY MET plus jets search, PAS-SUS-08-002 (2008).Google Scholar
  61. [61]
    CMS collaboration, Search for new physics at CMS with jets and missing momentum, PAS-SUS-10-005 (2010).Google Scholar
  62. [62]
    Z. Bern et al., Driving missing data at next-to-leading order, Phys. Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ν(l)jj and+ jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jpn. 57 (1988) 4126.ADSCrossRefGoogle Scholar
  65. [65]
    D0 collaboration, V. Abazov et al., A precision measurement of the mass of the top quark, Nature 429 (2004) 638 [hep-ex/0406031] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ATLAS collaboration, ATLAS sensitivity prospects for 1 Higgs boson production at the LHC Running at 7, 8 or 9 TeV, PHYS-PUB-2010-015 (2010).Google Scholar
  67. [67]
    CMS collaboration, The CMS physics reach for searches at 7 TeV, CMS-NOTE-2010-008 (2010).Google Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryMenlo ParkU.S.A
  2. 2.Santa Cruz Inst. for Particle PhysicsUniv. of CaliforniaSanta CruzU.S.A
  3. 3.Department of Physics, Sloane LaboratoryYale UniversityNew HavenU.S.A

Personalised recommendations