Advertisement

Flavour physics from an approximate U(2)3 symmetry

  • Riccardo Barbieri
  • Dario Buttazzo
  • Filippo Sala
  • David M. Straub
Article

Abstract

The quark sector of the Standard Model exhibits an approximate U(2)3 flavour symmetry. This symmetry, broken in specific directions dictated by minimality, can explain the success of the Cabibbo-Kobayashi-Maskawa picture of flavour mixing and CP violation, confirmed by the data so far, while allowing for observable deviations from it, as expected in most models of ElectroWeak Symmetry Breaking. Building on previous work in the specific context of supersymmetry, we analyze the expected effects and we quantify the current bounds in a general Effective Field Theory framework. As a further relevant example we then show how the U(2)3 symmetry and its breaking can be implemented in a generic composite Higgs model and we make a first analysis of its peculiar consequences. We also discuss how some partial extension of U(2)3 to the lepton sector can arise, both in general and in composite Higgs models. An optimistic though conceivable interpretation of the considerations developed in this paper gives reasons to think that new physics searches in the flavour sector may be about to explore an interesting realm of phenomena.

Keywords

Beyond Standard Model Rare Decays CP violation Technicolor and Composite Models 

References

  1. [1]
    R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSGoogle Scholar
  2. [2]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Barbieri, P. Campli, G. Isidori, F. Sala and D.M. Straub, B-decay CP-asymmetries in SUSY with a U(2)3 flavour symmetry, Eur. Phys. J. C 71 (2011) 1812 [arXiv:1108.5125] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Feldmann and T. Mannel, Large top mass and non-linear representation of flavour symmetry, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Isidori and D.M. Straub, Minimal flavour violation and beyond, arXiv:1202.0464 [INSPIRE].
  10. [10]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV Effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Lunghi and A. Soni, Possible evidence for the breakdown of the CKM-paradigm of CP-violation, Phys. Lett. B 697 (2011) 323 [arXiv:1010.6069] [INSPIRE].ADSGoogle Scholar
  15. [15]
    UTfit collaboration, A. Bevan et al., Update of the unitarity triangle analysis, PoS(ICHEP2010)270 [arXiv:1010.5089] [INSPIRE].
  16. [16]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ K and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Hardy and I. Towner, Superallowed 0+ → 0+ nuclear beta decays: a new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Antonelli et al., An evaluation of |V us| and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSGoogle Scholar
  22. [22]
    BaBar collaboration, R. Kowalewski, |V ub| and |V cb| from semileptonic B decays and Bτν, PoS(BEAUTY2011)030.
  23. [23]
    E. Lunghi and A. Soni, Demise of CKM and its aftermath, arXiv:1104.2117 [INSPIRE].
  24. [24]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {{B}^0} - {{\overline B }^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  26. [26]
    J. Brod and M. Gorbahn, ϵ K at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CDF collaboration, A. Abulencia et al., Observation of \( B_s^0 - \overline B_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    LHCb collaboration, Results on CP-violation in B s mixing, LHCb-TALK-2012-029 (2012).
  29. [29]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Barbieri, G. Isidori and D. Pappadopulo, Composite fermions in electroweak symmetry breaking, JHEP 02 (2009) 029 [arXiv:0811.2888] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Wintz, Results of the SINDRUM-II experiment, Conf. Proc. C980420 (1998) 534.Google Scholar
  38. [38]
    BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ + τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Prades, Standard model prediction of the muon anomalous magnetic moment, Acta Phys. Polon. Supp. 3 (2010) 75 [arXiv:0909.2546] [INSPIRE].Google Scholar
  41. [41]
    A.J. Buras, C. Grojean, S. Pokorski and R. Ziegler, FCNC effects in a minimal theory of fermion masses, JHEP 08 (2011) 028 [arXiv:1105.3725] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  43. [43]
    O. Gedalia, Y. Grossman, Y. Nir and G. Perez, Lessons from recent measurements of \( {{D}^0} - {{\overline D }^0} \) mixing, Phys. Rev. D 80 (2009) 055024 [arXiv:0906.1879] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A.F. Falk, Y. Grossman, Z. Ligeti and A.A. Petrov, SU(3) breaking and \( {{D}^0} - {{\overline D }^0} \) mixing, Phys. Rev. D 65 (2002) 054034 [hep-ph/0110317] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.F. Falk, Y. Grossman, Z. Ligeti, Y. Nir and A.A. Petrov, The \( {{D}^0} - {{\overline D }^0} \) mass difference from a dispersion relation, Phys. Rev. D 69 (2004) 114021 [hep-ph/0402204] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G. Isidori, J.F. Kamenik, Z. Ligeti and G. Perez, Implications of the LHCb evidence for charm CP-violation, Phys. Lett. B 711 (2012) 46 [arXiv:1111.4987] [INSPIRE].ADSGoogle Scholar
  47. [47]
    LHCb collaboration, R. Aaij et al., Evidence for CP-violation in time-integrated D 0h h + decay rates, Phys. Rev. Lett. 108 (2012) 111602 [arXiv:1112.0938] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G.F. Giudice, G. Isidori and P. Paradisi, Direct CP-violation in charm and flavor mixing beyond the SM, JHEP 04 (2012) 060 [arXiv:1201.6204] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    ATLAS collaboration, J. Carvalho et al., Study of ATLAS sensitivity to FCNC top decays, Eur. Phys. J. C 52 (2007) 999 [arXiv:0712.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Cordero-Cid, J. Hernandez, G. Tavares-Velasco and J. Toscano, Bounding the top and bottom electric dipole moments from neutron experimental data, J. Phys. G 35 (2008) 025004 [arXiv:0712.0154] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  54. [54]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Barbieri, L.J. Hall and A. Strumia, Violations of lepton flavor and CP in supersymmetric unified theories, Nucl. Phys. B 445 (1995) 219 [hep-ph/9501334] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Riccardo Barbieri
    • 1
  • Dario Buttazzo
    • 1
  • Filippo Sala
    • 1
  • David M. Straub
    • 1
  1. 1.Scuola Normale Superiore and INFNPisaItaly

Personalised recommendations