QCD coherence and the top quark asymmetry

  • Peter Skands
  • Bryan Webber
  • Jan Winter
Open Access


Coherent QCD radiation in the hadroproduction of top quark pairs leads to a forward-backward asymmetry that grows more negative with increasing transverse momentum of the pair. This feature is present in Monte Carlo event generators with coherent parton showering, even though the production process is treated at leading order and has no intrinsic asymmetry before showering. In addition, depending on the treatment of recoils, showering can produce a positive contribution to the inclusive asymmetry. We explain the origin of these features, compare them in fixed-order calculations and the Herwig++, Pythia and Sherpa event generators, and discuss their implications.


QCD Phenomenology Hadronic Colliders 


  1. [1]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CDF collaboration, T. Aaltonen et al., Study of the Top Quark Production Asymmetry and Its Mass and Rapidity Dependence in the Full Run II Tevatron Dataset, Conference Note 10807,
  6. [6]
    L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84 (2011) 011504 [arXiv:1105.5167] [INSPIRE].ADSGoogle Scholar
  9. [9]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D 84 (2011) 074004 [arXiv:1106.6051] [INSPIRE].ADSGoogle Scholar
  10. [10]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Melnikov, A. Scharf and M. Schulze, Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev. D 85 (2012) 054002 [arXiv:1111.4991] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.V. Manohar and M. Trott, Electroweak Sudakov Corrections and the Top Quark Forward-Backward Asymmetry, Phys. Lett. B 711 (2012) 313 [arXiv:1201.3926] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.M. Campbell and R.K. Ellis, Top-quark processes at NLO in production and decay, arXiv:1204.1513 [INSPIRE].
  16. [16]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.K. Ellis and J.C. Sexton, Explicit Formulae for Heavy Flavor Production, Nucl. Phys. B 282 (1987) 642 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Marchesini and B.R. Webber, Simulation of QCD coherence in heavy quark production and decay, Nucl. Phys. B 330 (1990) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Frixione, P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Bähr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Gieseke, P. Stephens and B.R. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Sjöstrand, A Model for Initial State Parton Showers, Phys. Lett. B 157 (1985) 321 [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    R. Corke and T. Sjöstrand, Improved Parton Showers at Large Transverse Momenta, Eur. Phys. J. C 69 (2010) 1 [arXiv:1003.2384] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
  38. [38]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, NNLO global parton analysis, Phys. Lett. B 531 (2002) 216 [hep-ph/0201127] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P.Z. Skands, et al., MCPLOTS,
  43. [43]
    S. Plätzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  45. [45]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  49. [49]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  50. [50]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline q \to t\overline t \) + X, arXiv:1204.5201 [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.CERN PH-THGeneva 23Switzerland
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations