Advertisement

Interpreting LHC Higgs results from natural new physics perspective

  • Dean Carmi
  • Adam Falkowski
  • Eric Kuflik
  • Tomer Volansky
Open Access
Article

Abstract

We analyze the 2011 LHC and Tevatron Higgs data in the context of simplified new physics models addressing the naturalness problem. These models are expected to contain new particles with sizable couplings to the Higgs boson, which can easily modify the Higgs production cross sections and branching fractions. We focus on searches in the hZZ → 4 l, hWW lνlν, h → γγ, hjj → γγjj and \( hV \to b\overline b V \) channels. Combining the available ATLAS, CMS, and Tevatron data in these channels, we derive constraints on an effective low-energy theory of the Higgs boson. We then map several simplified scenarios to the effective theory, capturing numerous natural new physics models such as supersymmetry and Little Higgs, and extract the constraints on the corresponding parameter space. We show that simple models where one fermionic or one scalar partner is responsible for stabilizing the Higgs potential are already constrained in a non-trivial way by LHC and Tevatron Higgs data.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008Google Scholar
  4. [4]
    ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2012-019 (2012).Google Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the decay channel HZZ (∗) → 4l with 4.8 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CMS collaboration, M. Pieri, Searches for the Standard Model Higgs Boson at CMS, arXiv:1205.2907 [INSPIRE].
  8. [8]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, A search using multivariate techniques for a standard model Higgs boson decaying into two photons, PAS-HIG-12-001.Google Scholar
  10. [10]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel HZZ → 4 leptons in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. Lett. 108, 111804 (2012) [arXiv:1202.1997] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012)91 [arXiv:1202.1489] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    CMS collaboration, S. Chatrchyan et al., Search for a Higgs boson in the decay channel \( H \to Z{Z^{{\left( * \right)}}} \to q\overline q {l^{ - }}{l^{ + }} \) in pp collisions at \( \sqrt {s} = 7\;TeV \), JHEP 04 (2012)036 [arXiv:1202.1416] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the H → W W → lνlν decay mode with 4.7 fb −1 of ATLAS data at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2012-012 (2012).Google Scholar
  14. [14]
    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaborations, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].
  15. [15]
    ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the H → WW (∗) → lνlν decay mode with 4.7/fb of ATLAS data at \( \sqrt {s} = 7\;TeV \), arXiv:1206.0756 [INSPIRE].
  16. [16]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC Experimental Scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Z. Kang, J. Li and T. Li, On Naturalness of the (N)MSSM, arXiv:1201.5305 [INSPIRE].
  29. [29]
    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, arXiv:1112.3277 [INSPIRE].
  30. [30]
    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a vectophobic Two-Higgs-Doublet-Model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, arXiv:1202.2364 [INSPIRE].
  33. [33]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: Standard Higgs and Hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Cheung and Y. Nomura, Higgs Descendants, arXiv:1112.3043 [INSPIRE].
  35. [35]
    G. Guo, B. Ren and X.-G. He, LHC Evidence Of A 126 GeV Higgs Boson From H → γγ With Three And Four Generations, arXiv:1112.3188 [INSPIRE].
  36. [36]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.F. Kamenik and C. Smith, Could a light Higgs boson illuminate the dark sector?, Phys. Rev. D 85 (2012) 093017 [arXiv:1201.4814] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the Standard Model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC ?, arXiv:1202.1796 [INSPIRE].
  42. [42]
    F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011)298 [arXiv:1106.3097] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs Maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].ADSGoogle Scholar
  45. [45]
    B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs Underproduction at the LHC, Phys. Rev. D 85 (2012)074031 [arXiv:1112.2208] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Drozd, B. Grzadkowski and J. Wudka, Multi-Scalar-Singlet Extension of the Standard Modelthe Case for Dark Matter and an Invisible Higgs Boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II: The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  50. [50]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  51. [51]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  53. [53]
    R. Dermisek and I. Low, Probing the Stop Sector and the Sanity of the MSSM with the Higgs Boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Carena, G. Nardini, M. Quirós and C. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Menon and D.E. Morrissey, Higgs Boson Signatures of MSSM Electroweak Baryogenesis, Phys. Rev. D 79 (2009) 115020 [arXiv:0903.3038] [INSPIRE].ADSGoogle Scholar
  56. [56]
    T. Cohen and A. Pierce, Electroweak Baryogenesis and Colored Scalars, Phys. Rev. D 85 (2012)033006 [arXiv:1110.0482] [INSPIRE].ADSGoogle Scholar
  57. [57]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H.-C. Cheng, I. Low and L.-T. Wang, Top partners in little Higgs theories with T-parity, Phys. Rev. D 74 (2006) 055001 [hep-ph/0510225] [INSPIRE].ADSGoogle Scholar
  59. [59]
    I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Schmaltz, The Simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    D.E. Kaplan and M. Schmaltz, The Little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: H → gg,γγ,Phys. Lett. B 563 (2003)191 [Erratum ibid. B 603(2004)257] [hep-ph/0302188] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005)165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs Search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, H → γγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  72. [72]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Z. Chacko, H.-S. Goh and R. Harnik, A Twin Higgs model from left-right symmetry, JHEP 01 (2006) 108 [hep-ph/0512088] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G G 24 (1998)1983 [hep-ph/9803324][INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].ADSGoogle Scholar
  76. [76]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Dean Carmi
    • 1
  • Adam Falkowski
    • 2
  • Eric Kuflik
    • 1
  • Tomer Volansky
    • 1
  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  2. 2.Laboratoire de Physique Théorique d’Orsay, UMR8627-CNRSUniversité Paris-SudOrsayFrance

Personalised recommendations