Minimal lepton flavor violating realizations of minimal seesaw models



We study the implications of the global U(1) R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1) R , we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1) R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on μ, μ → 3e and μe conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial BL asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) BL asymmetries consistent with the observed baryon asymmetry of the Universe.


Rare Decays Beyond Standard Model Neutrino Physics 


  1. [1]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Alonso, G. Isidori, L. Merlo, L.A. Muñoz and E. Nardi, Minimal flavour violation extensions of the seesaw, JHEP 06 (2011) 037 [arXiv:1103.5461] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Ibarra, E. Molinaro and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Ibarra, E. Molinaro and S. Petcov, Lepton Number Violation in TeV Scale See-Saw Extensions of the Standard Model, J. Phys. Conf. Ser. 335 (2011) 012048 [arXiv:1101.5778] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Aristizabal Sierra and C.E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [arXiv:1106.3587] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.F. Kamenik and M. Nemevšek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μeγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Mohapatra and J. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Branco, W. Grimus and L. Lavoura, The Seesaw Mechanism in the Presence of a Conserved Lepton Number, Nucl. Phys. B 312 (1989) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P.-H. Gu, M. Hirsch, U. Sarkar and J. Valle, Neutrino masses, leptogenesis and dark matter in hybrid seesaw, Phys. Rev. D 79 (2009) 033010 [arXiv:0811.0953] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Ibáñez, S. Morisi and J. Valle, Inverse tri-bimaximal type-III seesaw and lepton flavor violation, Phys. Rev. D 80 (2009) 053015 [arXiv:0907.3109] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D. Forero, S. Morisi, M. Tortola and J. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
  26. [26]
    BABAR collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Hayasaka et al., Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 Million Produced τ + τ Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSGoogle Scholar
  30. [30]
  31. [31]
    SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].ADSGoogle Scholar
  32. [32]
    SINDRUM II collaboration, W.H. Bertl et al., A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C. Ankenbrandt et al., Using the Fermilab proton source for a muon to electron conversion experiment, physics/0611124 [INSPIRE].
  34. [34]
  35. [35]
  36. [36]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  37. [37]
    WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps and Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Asaka and S. Blanchet, Leptogenesis with an almost conserved lepton number, Phys. Rev. D 78 (2008) 123527 [arXiv:0810.3015] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947] [INSPIRE].ADSGoogle Scholar
  42. [42]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • D. Aristizabal Sierra
    • 1
  • A. Degee
    • 1
  • J. F. Kamenik
    • 2
    • 3
  1. 1.IFPA, Dep. AGOUniversite de LiegeLiege 1Belgium
  2. 2.J. Stefan InstituteLjubljanaSlovenia
  3. 3.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations